Format
Sort by
Items per page

Send to

Choose Destination

Links from Gene

Items: 1 to 20 of 198

1.

Phosphorylation induced cochaperone unfolding promotes kinase recruitment and client class-specific Hsp90 phosphorylation.

Bachman AB, Keramisanou D, Xu W, Beebe K, Moses MA, Vasantha Kumar MV, Gray G, Noor RE, van der Vaart A, Neckers L, Gelis I.

Nat Commun. 2018 Jan 17;9(1):265. doi: 10.1038/s41467-017-02711-w.

2.

How Hsp90 and Cdc37 Lubricate Kinase Molecular Switches.

Verba KA, Agard DA.

Trends Biochem Sci. 2017 Oct;42(10):799-811. doi: 10.1016/j.tibs.2017.07.002. Epub 2017 Aug 4. Review.

3.

Phosphorylated and unphosphorylated serine 13 of CDC37 stabilize distinct interactions between its client and HSP90 binding domains.

Liu W, Landgraf R.

Biochemistry. 2015 Feb 24;54(7):1493-504. doi: 10.1021/bi501129g. Epub 2015 Feb 11.

4.

Suppressing the CDC37 cochaperone in hepatocellular carcinoma cells inhibits cell cycle progression and cell growth.

Wang Z, Wei W, Sun CK, Chua MS, So S.

Liver Int. 2015 Apr;35(4):1403-15. doi: 10.1111/liv.12651. Epub 2014 Aug 25.

PMID:
25098386
5.

The human Cdc37.Hsp90 complex studied by heteronuclear NMR spectroscopy.

Sreeramulu S, Jonker HR, Langer T, Richter C, Lancaster CR, Schwalbe H.

J Biol Chem. 2009 Feb 6;284(6):3885-96. doi: 10.1074/jbc.M806715200. Epub 2008 Dec 10.

6.

Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors.

Smith JR, Clarke PA, de Billy E, Workman P.

Oncogene. 2009 Jan 15;28(2):157-69. doi: 10.1038/onc.2008.380. Epub 2008 Oct 20.

7.

Targeting Cdc37 inhibits multiple signaling pathways and induces growth arrest in prostate cancer cells.

Gray PJ Jr, Stevenson MA, Calderwood SK.

Cancer Res. 2007 Dec 15;67(24):11942-50.

8.

A client-binding site of Cdc37.

Terasawa K, Minami Y.

FEBS J. 2005 Sep;272(18):4684-90.

9.

Cdc37 enhances proliferation and is necessary for normal human prostate epithelial cell survival.

Schwarze SR, Fu VX, Jarrard DF.

Cancer Res. 2003 Aug 1;63(15):4614-9.

10.

p50(cdc37) is a nonexclusive Hsp90 cohort which participates intimately in Hsp90-mediated folding of immature kinase molecules.

Hartson SD, Irwin AD, Shao J, Scroggins BT, Volk L, Huang W, Matts RL.

Biochemistry. 2000 Jun 27;39(25):7631-44.

PMID:
10858314
11.

p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function.

Grammatikakis N, Lin JH, Grammatikakis A, Tsichlis PN, Cochran BH.

Mol Cell Biol. 1999 Mar;19(3):1661-72.

12.

CDC37 is required for p60v-src activity in yeast.

Dey B, Lightbody JJ, Boschelli F.

Mol Biol Cell. 1996 Sep;7(9):1405-17.

13.

Disease Variants of FGFR3 Reveal Molecular Basis for the Recognition and Additional Roles for Cdc37 in Hsp90 Chaperone System.

Bunney TD, Inglis AJ, Sanfelice D, Farrell B, Kerr CJ, Thompson GS, Masson GR, Thiyagarajan N, Svergun DI, Williams RL, Breeze AL, Katan M.

Structure. 2018 Mar 6;26(3):446-458.e8. doi: 10.1016/j.str.2018.01.016. Epub 2018 Feb 22.

14.
15.

Computational Discovery of Niclosamide Ethanolamine, a Repurposed Drug Candidate That Reduces Growth of Hepatocellular Carcinoma Cells In Vitro and in Mice by Inhibiting Cell Division Cycle 37 Signaling.

Chen B, Wei W, Ma L, Yang B, Gill RM, Chua MS, Butte AJ, So S.

Gastroenterology. 2017 Jun;152(8):2022-2036. doi: 10.1053/j.gastro.2017.02.039. Epub 2017 Mar 8.

16.

Serine/Threonine Kinase Unc-51-like Kinase-1 (Ulk1) Phosphorylates the Co-chaperone Cell Division Cycle Protein 37 (Cdc37) and Thereby Disrupts the Stability of Cdc37 Client Proteins.

Li R, Yuan F, Fu W, Zhang L, Zhang N, Wang Y, Ma K, Li X, Wang L, Zhu WG, Zhao Y.

J Biol Chem. 2017 Feb 17;292(7):2830-2841. doi: 10.1074/jbc.M116.762443. Epub 2017 Jan 10.

17.

Molecular Mechanism of Protein Kinase Recognition and Sorting by the Hsp90 Kinome-Specific Cochaperone Cdc37.

Keramisanou D, Aboalroub A, Zhang Z, Liu W, Marshall D, Diviney A, Larsen RW, Landgraf R, Gelis I.

Mol Cell. 2016 Apr 21;62(2):260-271. doi: 10.1016/j.molcel.2016.04.005.

18.

FW-04-806 inhibits proliferation and induces apoptosis in human breast cancer cells by binding to N-terminus of Hsp90 and disrupting Hsp90-Cdc37 complex formation.

Huang W, Ye M, Zhang LR, Wu QD, Zhang M, Xu JH, Zheng W.

Mol Cancer. 2014 Jun 14;13:150. doi: 10.1186/1476-4598-13-150.

19.

Genome-wide functional screening identifies CDC37 as a crucial HSP90-cofactor for KIT oncogenic expression in gastrointestinal stromal tumors.

Mariño-Enríquez A, Ou WB, Cowley G, Luo B, Jonker AH, Mayeda M, Okamoto M, Eilers G, Czaplinski JT, Sicinska E, Wang Y, Taguchi T, Demetri GD, Root DE, Fletcher JA.

Oncogene. 2014 Apr 3;33(14):1872-6. doi: 10.1038/onc.2013.127. Epub 2013 Apr 15.

20.

Novel interaction between the co-chaperone Cdc37 and Rho GTPase exchange factor Vav3 promotes androgen receptor activity and prostate cancer growth.

Wu F, Peacock SO, Rao S, Lemmon SK, Burnstein KL.

J Biol Chem. 2013 Feb 22;288(8):5463-74. doi: 10.1074/jbc.M112.390963. Epub 2012 Dec 31.

Supplemental Content

Support Center