Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

An anatomical model for streaming potentials in osteons.

Pollack SR, Petrov N, Salzstein R, Brankov G, Blagoeva R.

J Biomech. 1984;17(8):627-36.

PMID:
6490675
2.

Microelectrode study of stress-generated potentials obtained from uniform and nonuniform compression of human bone.

Iannacone W, Korostoff E, Pollack SR.

J Biomed Mater Res. 1979 Sep;13(5):753-63.

PMID:
479220
3.

A discrete model for streaming potentials in a single osteon.

Petrov N, Pollack S, Blagoeva R.

J Biomech. 1989;22(6-7):517-21.

PMID:
2808436
4.

Microelectrode studies of stress-generated potentials in four-point bending of bone.

Starkebaum W, Pollack SR, Korostoff E.

J Biomed Mater Res. 1979 Sep;13(5):729-51.

PMID:
479219
5.

Oscillatory and step response electromechanical phenomena in human and bovine bone.

Scott GC, Korostoff E.

J Biomech. 1990;23(2):127-43. Review.

PMID:
2179217
6.
7.

Orientation and size-dependent mechanical modulation within individual secondary osteons in cortical bone tissue.

Carnelli D, Vena P, Dao M, Ortiz C, Contro R.

J R Soc Interface. 2013 Feb 6;10(81):20120953. doi: 10.1098/rsif.2012.0953. Print 2013 Apr 6.

8.

Bone streaming potentials and currents depend on anatomical structure and loading orientation.

MacGinitie LA, Stanely GD, Bieber WA, Wu DD.

J Biomech. 1997 Nov-Dec;30(11-12):1133-9.

PMID:
9456381
9.

Ion concentration effects on bone streaming potentials and zeta potentials.

Walsh WR, Guzelsu N.

Biomaterials. 1993 Apr;14(5):331-6.

PMID:
8507775
10.

Effects of the basic multicellular unit and lamellar thickness on osteonal fatigue life.

Pellegrino G, Roman M, Fritton JC.

J Biomech. 2017 Jul 26;60:116-123. doi: 10.1016/j.jbiomech.2017.06.006. Epub 2017 Jun 23.

11.

Influence of interstitial bone microcracks on strain-induced fluid flow.

Nguyen VH, Lemaire T, Naili S.

Biomech Model Mechanobiol. 2011 Dec;10(6):963-72. doi: 10.1007/s10237-011-0287-1. Epub 2011 Jan 21.

PMID:
21253808
12.

Analysis of the effect of osteon diameter on the potential relationship of osteocyte lacuna density and osteon wall thickness.

Skedros JG, Clark GC, Sorenson SM, Taylor KW, Qiu S.

Anat Rec (Hoboken). 2011 Sep;294(9):1472-85. doi: 10.1002/ar.21452. Epub 2011 Aug 1.

13.

Electromechanical potentials in cortical bone--I. A continuum approach.

Salzstein RA, Pollack SR, Mak AF, Petrov N.

J Biomech. 1987;20(3):261-70.

PMID:
3584151
14.

Micromechanics of osteonal cortical bone fracture.

Guo XE, Liang LC, Goldstein SA.

J Biomech Eng. 1998 Feb;120(1):112-7.

PMID:
9675689
15.
16.

Morphometric analysis of osteonal architecture in bones from healthy young human male subjects using scanning electron microscopy.

Pazzaglia UE, Congiu T, Pienazza A, Zakaria M, Gnecchi M, Dell'orbo C.

J Anat. 2013 Sep;223(3):242-54. doi: 10.1111/joa.12079. Epub 2013 Jul 8.

17.

The origin of stress-generated potentials in fluid-saturated bone.

Pienkowski D, Pollack SR.

J Orthop Res. 1983;1(1):30-41.

PMID:
6679573
18.

Poroelastic behaviour of cortical bone under harmonic axial loading: a finite element study at the osteonal scale.

Nguyen VH, Lemaire T, Naili S.

Med Eng Phys. 2010 May;32(4):384-90. doi: 10.1016/j.medengphy.2010.02.001. Epub 2010 Mar 11.

PMID:
20226715
19.

On the mechanical characterization of compact bone structure using the homogenization theory.

Aoubiza B, Crolet JM, Meunier A.

J Biomech. 1996 Dec;29(12):1539-47.

PMID:
8945652
20.

Supplemental Content

Support Center