Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3.

Zhou M, Sandercock AM, Fraser CS, Ridlova G, Stephens E, Schenauer MR, Yokoi-Fong T, Barsky D, Leary JA, Hershey JW, Doudna JA, Robinson CV.

Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18139-44. doi: 10.1073/pnas.0801313105. Epub 2008 Jul 1.

2.

Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit.

Hashem Y, des Georges A, Dhote V, Langlois R, Liao HY, Grassucci RA, Pestova TV, Hellen CU, Frank J.

Nature. 2013 Nov 28;503(7477):539-43. doi: 10.1038/nature12658. Epub 2013 Nov 3.

3.

Functional reconstitution of human eukaryotic translation initiation factor 3 (eIF3).

Sun C, Todorovic A, Querol-Audí J, Bai Y, Villa N, Snyder M, Ashchyan J, Lewis CS, Hartland A, Gradia S, Fraser CS, Doudna JA, Nogales E, Cate JH.

Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20473-8. doi: 10.1073/pnas.1116821108. Epub 2011 Dec 1.

4.

Distinct regions of human eIF3 are sufficient for binding to the HCV IRES and the 40S ribosomal subunit.

Cai Q, Todorovic A, Andaya A, Gao J, Leary JA, Cate JH.

J Mol Biol. 2010 Oct 22;403(2):185-96. doi: 10.1016/j.jmb.2010.07.054. Epub 2010 Sep 15.

5.

Human eukaryotic initiation factor 4G (eIF4G) protein binds to eIF3c, -d, and -e to promote mRNA recruitment to the ribosome.

Villa N, Do A, Hershey JW, Fraser CS.

J Biol Chem. 2013 Nov 15;288(46):32932-40. doi: 10.1074/jbc.M113.517011. Epub 2013 Oct 3.

6.

Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA.

Ji H, Fraser CS, Yu Y, Leary J, Doudna JA.

Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):16990-5. Epub 2004 Nov 24.

7.

Structural characterization of the human eukaryotic initiation factor 3 protein complex by mass spectrometry.

Damoc E, Fraser CS, Zhou M, Videler H, Mayeur GL, Hershey JW, Doudna JA, Robinson CV, Leary JA.

Mol Cell Proteomics. 2007 Jul;6(7):1135-46. Epub 2007 Feb 23.

8.

Two RNA-binding motifs in eIF3 direct HCV IRES-dependent translation.

Sun C, Querol-Audí J, Mortimer SA, Arias-Palomo E, Doudna JA, Nogales E, Cate JH.

Nucleic Acids Res. 2013 Aug;41(15):7512-21. doi: 10.1093/nar/gkt510. Epub 2013 Jun 13.

9.

Novel insights into the architecture and protein interaction network of yeast eIF3.

Khoshnevis S, Hauer F, Milón P, Stark H, Ficner R.

RNA. 2012 Dec;18(12):2306-19. doi: 10.1261/rna.032532.112. Epub 2012 Oct 26.

10.

The interaction between human initiation factor eIF3 subunit c and heat-shock protein 90: a necessary factor for translation mediated by the hepatitis C virus internal ribosome entry site.

Ujino S, Nishitsuji H, Sugiyama R, Suzuki H, Hishiki T, Sugiyama K, Shimotohno K, Takaku H.

Virus Res. 2012 Jan;163(1):390-5. doi: 10.1016/j.virusres.2011.10.003. Epub 2011 Oct 14.

PMID:
22016036
11.

eIF3 Peripheral Subunits Rearrangement after mRNA Binding and Start-Codon Recognition.

Simonetti A, Brito Querido J, Myasnikov AG, Mancera-Martinez E, Renaud A, Kuhn L, Hashem Y.

Mol Cell. 2016 Jul 21;63(2):206-217. doi: 10.1016/j.molcel.2016.05.033. Epub 2016 Jun 30.

12.

Human initiation factor eIF3 subunit b interacts with HCV IRES RNA through its N-terminal RNA recognition motif.

Pérard J, Rasia R, Medenbach J, Ayala I, Boisbouvier J, Drouet E, Baudin F.

FEBS Lett. 2009 Jan 5;583(1):70-4. doi: 10.1016/j.febslet.2008.11.025. Epub 2008 Dec 6.

13.

Spectrin domain of eukaryotic initiation factor 3a is the docking site for formation of the a:b:i:g subcomplex.

Dong Z, Qi J, Peng H, Liu J, Zhang JT.

J Biol Chem. 2013 Sep 27;288(39):27951-9. doi: 10.1074/jbc.M113.483164. Epub 2013 Aug 6.

14.

Small ribosomal protein RPS0 stimulates translation initiation by mediating 40S-binding of eIF3 via its direct contact with the eIF3a/TIF32 subunit.

Kouba T, Dányi I, Gunišová S, Munzarová V, Vlčková V, Cuchalová L, Neueder A, Milkereit P, Valášek LS.

PLoS One. 2012;7(7):e40464. doi: 10.1371/journal.pone.0040464. Epub 2012 Jul 5.

15.

Structural roles for human translation factor eIF3 in initiation of protein synthesis.

Siridechadilok B, Fraser CS, Hall RJ, Doudna JA, Nogales E.

Science. 2005 Dec 2;310(5753):1513-5.

16.

Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e subunit.

LeFebvre AK, Korneeva NL, Trutschl M, Cvek U, Duzan RD, Bradley CA, Hershey JW, Rhoads RE.

J Biol Chem. 2006 Aug 11;281(32):22917-32. Epub 2006 Jun 9.

17.

Reconstitution reveals the functional core of mammalian eIF3.

Masutani M, Sonenberg N, Yokoyama S, Imataka H.

EMBO J. 2007 Jul 25;26(14):3373-83. Epub 2007 Jun 21.

18.

Molecular architecture of the 40S⋅eIF1⋅eIF3 translation initiation complex.

Erzberger JP, Stengel F, Pellarin R, Zhang S, Schaefer T, Aylett CHS, Cimermančič P, Boehringer D, Sali A, Aebersold R, Ban N.

Cell. 2014 Aug 28;158(5):1123-1135. doi: 10.1016/j.cell.2014.07.044. Erratum in: Cell. 2014 Nov 20;159(5):1227.

19.

The translation initiation complex eIF3 in trypanosomatids and other pathogenic excavates--identification of conserved and divergent features based on orthologue analysis.

Rezende AM, Assis LA, Nunes EC, da Costa Lima TD, Marchini FK, Freire ER, Reis CR, de Melo Neto OP.

BMC Genomics. 2014 Dec 23;15:1175. doi: 10.1186/1471-2164-15-1175.

20.

Structure of a yeast 40S-eIF1-eIF1A-eIF3-eIF3j initiation complex.

Aylett CH, Boehringer D, Erzberger JP, Schaefer T, Ban N.

Nat Struct Mol Biol. 2015 Mar;22(3):269-71. doi: 10.1038/nsmb.2963. Epub 2015 Feb 9.

PMID:
25664723

Supplemental Content

Support Center