Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 207

1.
2.

Nonstructural 5A protein activates beta-catenin signaling cascades: implication of hepatitis C virus-induced liver pathogenesis.

Park CY, Choi SH, Kang SM, Kang JI, Ahn BY, Kim H, Jung G, Choi KY, Hwang SB.

J Hepatol. 2009 Nov;51(5):853-64. doi: 10.1016/j.jhep.2009.06.026. Epub 2009 Aug 12.

PMID:
19726098
3.
4.

The Hepatitis C virus NS5A protein activates a phosphoinositide 3-kinase-dependent survival signaling cascade.

Street A, Macdonald A, Crowder K, Harris M.

J Biol Chem. 2004 Mar 26;279(13):12232-41. Epub 2004 Jan 5.

5.

The hepatitis C virus non-structural NS5A protein inhibits activating protein-1 function by perturbing ras-ERK pathway signaling.

Macdonald A, Crowder K, Street A, McCormick C, Saksela K, Harris M.

J Biol Chem. 2003 May 16;278(20):17775-84. Epub 2003 Mar 5.

6.

Axin facilitates Smad3 activation in the transforming growth factor beta signaling pathway.

Furuhashi M, Yagi K, Yamamoto H, Furukawa Y, Shimada S, Nakamura Y, Kikuchi A, Miyazono K, Kato M.

Mol Cell Biol. 2001 Aug;21(15):5132-41.

7.
9.

Hepatitis C virus NS5A and subgenomic replicon activate NF-kappaB via tyrosine phosphorylation of IkappaBalpha and its degradation by calpain protease.

Waris G, Livolsi A, Imbert V, Peyron JF, Siddiqui A.

J Biol Chem. 2003 Oct 17;278(42):40778-87. Epub 2003 Aug 7. Retraction in: J Biol Chem. 2018 Dec 28;293(52):20012.

10.

TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4.

Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, ten Dijke P.

EMBO J. 1997 Sep 1;16(17):5353-62.

11.

Inactivation of smad-transforming growth factor beta signaling by Ca(2+)-calmodulin-dependent protein kinase II.

Wicks SJ, Lui S, Abdel-Wahab N, Mason RM, Chantry A.

Mol Cell Biol. 2000 Nov;20(21):8103-11.

13.

Transforming growth factor-beta repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3.

Yuan W, Varga J.

J Biol Chem. 2001 Oct 19;276(42):38502-10. Epub 2001 Aug 13.

14.

The murine gastrin promoter is synergistically activated by transforming growth factor-beta/Smad and Wnt signaling pathways.

Lei S, Dubeykovskiy A, Chakladar A, Wojtukiewicz L, Wang TC.

J Biol Chem. 2004 Oct 8;279(41):42492-502. Epub 2004 Jul 28.

15.

The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells.

Poncelet AC, de Caestecker MP, Schnaper HW.

Kidney Int. 1999 Oct;56(4):1354-65.

16.

Hepatitis C virus NS5A promotes insulin resistance through IRS-1 serine phosphorylation and increased gluconeogenesis.

Parvaiz F, Manzoor S, Iqbal J, Sarkar-Dutta M, Imran M, Waris G.

World J Gastroenterol. 2015 Nov 21;21(43):12361-9. doi: 10.3748/wjg.v21.i43.12361.

17.

Nuclear targeting of transforming growth factor-beta-activated Smad complexes.

Chen HB, Rud JG, Lin K, Xu L.

J Biol Chem. 2005 Jun 3;280(22):21329-36. Epub 2005 Mar 30.

18.

Interferon-gamma interferes with transforming growth factor-beta signaling through direct interaction of YB-1 with Smad3.

Higashi K, Inagaki Y, Fujimori K, Nakao A, Kaneko H, Nakatsuka I.

J Biol Chem. 2003 Oct 31;278(44):43470-9. Epub 2003 Aug 13.

19.

Functional cloning of the proto-oncogene brain factor-1 (BF-1) as a Smad-binding antagonist of transforming growth factor-beta signaling.

Rodriguez C, Huang LJ, Son JK, McKee A, Xiao Z, Lodish HF.

J Biol Chem. 2001 Aug 10;276(32):30224-30. Epub 2001 May 31.

Supplemental Content

Support Center