Format
Sort by

Send to

Choose Destination

Links from Gene

Items: 1 to 20 of 52

1.

The kick-in system: a novel rapid knock-in strategy.

Tomonoh Y, Deshimaru M, Araki K, Miyazaki Y, Arasaki T, Tanaka Y, Kitamura H, Mori F, Wakabayashi K, Yamashita S, Saito R, Itoh M, Uchida T, Yamada J, Migita K, Ueno S, Kitaura H, Kakita A, Lossin C, Takano Y, Hirose S.

PLoS One. 2014 Feb 19;9(2):e88549. doi: 10.1371/journal.pone.0088549.

2.

Effects of KCNQ2 gene truncation on M-type Kv7 potassium currents.

Robbins J, Passmore GM, Abogadie FC, Reilly JM, Brown DA.

PLoS One. 2013 Aug 20;8(8):e71809. doi: 10.1371/journal.pone.0071809.

3.

Accumulation of Kv7.2 channels in putative ectopic transduction zones of mice nerve-end neuromas.

Roza C, Castillejo S, Lopez-García JA.

Mol Pain. 2011 Aug 14;7:58. doi: 10.1186/1744-8069-7-58.

4.

Immunohistochemical analysis of KCNQ2 potassium channels in adult and developing mouse brain.

Weber YG, Geiger J, Kämpchen K, Landwehrmeyer B, Sommer C, Lerche H.

Brain Res. 2006 Mar 10;1077(1):1-6.

PMID:
16500630
5.

A spontaneous mutation involving Kcnq2 (Kv7.2) reduces M-current density and spike frequency adaptation in mouse CA1 neurons.

Otto JF, Yang Y, Frankel WN, White HS, Wilcox KS.

J Neurosci. 2006 Feb 15;26(7):2053-9.

6.

KCNQ2 is a nodal K+ channel.

Devaux JJ, Kleopa KA, Cooper EC, Scherer SS.

J Neurosci. 2004 Feb 4;24(5):1236-44.

7.

KQT2, a new putative potassium channel family produced by alternative splicing. Isolation, genomic structure, and alternative splicing of the putative potassium channels.

Nakamura M, Watanabe H, Kubo Y, Yokoyama M, Matsumoto T, Sasai H, Nishi Y.

Receptors Channels. 1998;5(5):255-71.

PMID:
9666519
8.

KCNQ Potassium Channels Modulate Sensitivity of Skin Down-hair (D-hair) Mechanoreceptors.

Schütze S, Orozco IJ, Jentsch TJ.

J Biol Chem. 2016 Mar 11;291(11):5566-75. doi: 10.1074/jbc.M115.681098.

PMID:
26733196
9.

Pathogenic plasticity of Kv7.2/3 channel activity is essential for the induction of tinnitus.

Li S, Choi V, Tzounopoulos T.

Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9980-5. doi: 10.1073/pnas.1302770110.

10.

Phosphatidylinositol 4,5-bisphosphate alters pharmacological selectivity for epilepsy-causing KCNQ potassium channels.

Zhou P, Yu H, Gu M, Nan FJ, Gao Z, Li M.

Proc Natl Acad Sci U S A. 2013 May 21;110(21):8726-31. doi: 10.1073/pnas.1302167110.

11.

Transcompartmental reversal of single fibre hyperexcitability in juxtaparanodal Kv1.1-deficient vagus nerve axons by activation of nodal KCNQ channels.

Glasscock E, Qian J, Kole MJ, Noebels JL.

J Physiol. 2012 Aug 15;590(16):3913-26. doi: 10.1113/jphysiol.2012.235606.

12.

Potential role of KCNQ/M-channels in regulating neuronal differentiation in mouse hippocampal and embryonic stem cell-derived neuronal cultures.

Zhou X, Song M, Chen D, Wei L, Yu SP.

Exp Neurol. 2011 Jun;229(2):471-83. doi: 10.1016/j.expneurol.2011.03.018.

13.

The C-terminal domain of ßIV-spectrin is crucial for KCNQ2 aggregation and excitability at nodes of Ranvier.

Devaux JJ.

J Physiol. 2010 Dec 1;588(Pt 23):4719-30. doi: 10.1113/jphysiol.2010.196022.

14.

Contribution of KCNQ2 and KCNQ3 to the medium and slow afterhyperpolarization currents.

Tzingounis AV, Nicoll RA.

Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19974-9. doi: 10.1073/pnas.0810535105.

15.

Mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsions show seizures and neuronal plasticity without synaptic reorganization.

Singh NA, Otto JF, Dahle EJ, Pappas C, Leslie JD, Vilaythong A, Noebels JL, White HS, Wilcox KS, Leppert MF.

J Physiol. 2008 Jul 15;586(14):3405-23. doi: 10.1113/jphysiol.2008.154971.

16.
17.

Disruption of the epilepsy KCNQ2 gene results in neural hyperexcitability.

Watanabe H, Nagata E, Kosakai A, Nakamura M, Yokoyama M, Tanaka K, Sasai H.

J Neurochem. 2000 Jul;75(1):28-33.

18.

Noise-induced plasticity of KCNQ2/3 and HCN channels underlies vulnerability and resilience to tinnitus.

Li S, Kalappa BI, Tzounopoulos T.

Elife. 2015 Aug 27;4. doi: 10.7554/eLife.07242.

19.

Conditional deletions of epilepsy-associated KCNQ2 and KCNQ3 channels from cerebral cortex cause differential effects on neuronal excitability.

Soh H, Pant R, LoTurco JJ, Tzingounis AV.

J Neurosci. 2014 Apr 9;34(15):5311-21. doi: 10.1523/JNEUROSCI.3919-13.2014.

20.

Activity-dependent transcriptional regulation of M-Type (Kv7) K(+) channels by AKAP79/150-mediated NFAT actions.

Zhang J, Shapiro MS.

Neuron. 2012 Dec 20;76(6):1133-46. doi: 10.1016/j.neuron.2012.10.019.

Items per page

Supplemental Content

Support Center