Send to

Choose Destination
Pain. 1997 Oct;73(1):23-8.

Stimulation of the greater occipital nerve increases metabolic activity in the trigeminal nucleus caudalis and cervical dorsal horn of the cat.

Author information

Institute of Neurology, The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.


Patients with primary headache syndromes often describe a distribution of pain that involves both frontal and occipital parts of the head. Such a distribution of pain does not respect the cutaneous sensory innervation of the head which would divide it into anterior (trigeminally innervated) and posterior (spinal nerve root innervated) regions. Studies of pain-producing intracranial structures, such as the superior sagittal sinus, have demonstrated that second order neurons as caudal as C2 are activated after either electrical or mechanical stimulation. For this study cats were anaesthetised with halothane (during surgery) and alpha-chloralose (60 mg/kg, i.p., then 20 mg/kg intravenous maintenance), paralysed (gallamine 6 mg/kg) and ventilated. The greater occipital nerve was isolated bilaterally and stimulated unilaterally using hook electrodes with stimuli of 100 V at 0.3 Hz. Metabolic activity in the caudal brain stem and upper cervical cord was measured using 2-deoxyglucose autoradiography and quantitative densitometry. Stimulation of the greater occipital nerve increased metabolic activity by 220% ipsilateral to stimulation and by a lesser amount contralaterally. Increases in metabolic activity were seen in the dorsal horn at the level of C1 and C2 as might be predicted from the cervical origin of the nerve. Neuronal activation appeared contiguous with the trigeminal nucleus caudalis and was in the same distribution as is seen when trigeminally-innervated structures are stimulated. These data suggest that the well recognised clinical phenomenon of pain at the front and back of the head and in the upper neck are likely to be a consequence of overlap of processing of nociceptive information at the level of the second order neurons.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center