Send to

Choose Destination
Circ Res. 1994 Jun;74(6):1097-113.

A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation.

Author information

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106-7207.


The action potential model presented in our accompanying article in this journal is used to investigate phenomena that involve dynamic changes of [Ca2+]i, as described below. Delayed afterdepolarizations (DADs) are induced by spontaneous Ca2+ release from the sarcoplasmic reticulum (SR), which, in turn, activates both the Na(+)-Ca2+ exchanger (INaCa) and a nonspecific Ca(2+)-activated current (Ins(Ca)). The relative contributions of INaCa and of Ins(Ca) to the generation of DADs are different under different degrees of Ca2+ overload. Early afterdepolarizations (EADs) can be categorized into two types: (1) plateau EADs, resulting from a secondary activation of the L-type Ca2+ current during the plateau of an action potential, and (2) phase-3 EADs, resulting from activation of INaCa and Ins(Ca) by increased [Ca2+]i due to spontaneous Ca2+ release from the SR during the late repolarization phase. Spontaneous rhythmic activity and triggered activity are caused by spontaneous Ca2+ release from the SR under conditions of Ca2+ overload. Postextrasystolic potentiation reflects the time delay associated with translocation of Ca2+ from network SR to junctional SR. The cell is paced at high frequencies to investigate the long-term effects on the intracellular ionic concentrations.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center