Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 1986 Aug;83(16):6226-30.

Steady-state level and turnover rate of the tripeptide Tyr-Gly-Gly as indexes of striatal enkephalin release in vivo and their reduction during pentobarbital anesthesia.

Abstract

Tyr-Gly-Gly (YGG) was recently shown to be an extraneuronal metabolite of opioid peptides derived from proenkephalin A, formed in brain by the action of "enkephalinase" (membrane metalloendopeptidase, EC 3.4.24.11) and degraded by aminopeptidases. The dynamic state of YGG in mouse striatum was studied by evaluating the changes in its level elicited by inhibitors of these peptidases. Inhibition of YGG synthesis by Thiorphan or acetorphan reduced YGG levels with a t1/2 (mean +/- SEM) of 12 +/- 2 min, indicating an apparent turnover rate (mean +/- SEM) of 18 +/- 2 pmol/mg of protein per hr. An apparent turnover rate of 18 +/- 2 pmol/mg of protein per hr was derived from the rate of YGG accumulation elicited by the aminopeptidase inhibitor bestatin. In addition, accumulation of Tyr-Gly-Gly-Phe-Met (YGGFM) in an extrasynaptosomal fraction after blockade of its degradation by Thiorphan and bestatin occurred at a rate of 18 +/- 3 pmol/mg of protein per hr, which is likely to reflect the rate of enkephalin release in vivo. Hence, the three series of data suggest that striatal enkephalins rapidly turn over--e.g., with a t1/2 in the 1-hr range. Pentobarbital anesthesia reduced by about 60% the rate of YGG accumulation elicited by bestatin and the extrasynaptosomal YGGFM accumulation elicited by Thiorphan and bestatin. This suggests that the activity of striatal enkephalin neurons is depressed during anesthesia. Pentobarbital (and chloral hydrate) did not affect the steady-state level of YGGFM but rapidly reduced that of YGG. Hence, the steady-state levels of YGG seem a reliable index of changes in enkephalin release, and measuring levels of characteristic fragments might therefore provide a general means of evaluating neuropeptide release in vivo.

PMID:
3526354
PMCID:
PMC386473
DOI:
10.1073/pnas.83.16.6226
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center