Format

Send to

Choose Destination
Curr Opin Chem Biol. 2019 Feb;48:86-95. doi: 10.1016/j.cbpa.2018.10.026. Epub 2018 Nov 29.

The subcellular organisation of Saccharomyces cerevisiae.

Author information

1
Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, United Kingdom; Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom.
2
Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, United Kingdom; Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom; Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, United Kingdom.
3
Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom.
4
Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, United Kingdom; Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, United Kingdom. Electronic address: k.s.lilley@bioc.cam.ac.uk.

Abstract

Subcellular protein localisation is essential for the mechanisms that govern cellular homeostasis. The ability to understand processes leading to this phenomenon will therefore enhance our understanding of cellular function. Here we review recent developments in this field with regard to mass spectrometry, fluorescence microscopy and computational prediction methods. We highlight relative strengths and limitations of current methodologies focussing particularly on studies in the yeast Saccharomyces cerevisiae. We further present the first cell-wide spatial proteome map of S. cerevisiae, generated using hyperLOPIT, a mass spectrometry-based protein correlation profiling technique. We compare protein subcellular localisation assignments from this map, with two published fluorescence microscopy studies and show that confidence in localisation assignment is attained using multiple orthogonal methods that provide complementary data.

PMID:
30503867
PMCID:
PMC6391909
DOI:
10.1016/j.cbpa.2018.10.026
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center