Format

Send to

Choose Destination
Mol Ecol. 2016 Mar;25(5):1032-57. doi: 10.1111/mec.13536.

Application of multivariate statistical techniques in microbial ecology.

Author information

1
Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, 260 Diggs Laboratory, 3640 Col. Glenn Hwy, Dayton, OH, 45435, USA.

Abstract

Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large-scale ecological data sets. In particular, noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amount of data, powerful statistical techniques of multivariate analysis are well suited to analyse and interpret these data sets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular data set. In this review, we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and data set structure.

KEYWORDS:

microbial communities; microbial ecology; microbiota; multivariate; ordination; statistics

PMID:
26786791
PMCID:
PMC4769650
[Available on 2017-03-01]
DOI:
10.1111/mec.13536
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center