Format

Send to

Choose Destination
J Phys Chem Lett. 2016 Feb 4;7(3):406-17. doi: 10.1021/acs.jpclett.5b02153. Epub 2016 Jan 15.

Charge Recombination Control for High Efficiency Quantum Dot Sensitized Solar Cells.

Author information

1
Key Laboratory for Advanced Materials, Institute of Applied Chemistry, East China University of Science and Technology , Shanghai 200237, China.

Abstract

Benefiting from the unique excellent optoelectronic properties of quantum dot light absorbers, quantum dot sensitized solar cell (QDSCs) are a promising candidate for the low-cost third-generation solar cells. Over the past few years, the power conversion efficiency (PCE) of QDSCs presents a rapid evolution from less than 1% to beyond 8%. Charge recombination is regarded as one of the most significant factors in limiting the photovoltaic performance of QDSCs. A significant improvement in the PCE of QDSCs has been obtained by charge recombination control. Some effective routes to suppress charge recombination processes, such as adopting preprepared high-quality QD sensitizers, tailoring the electronic properties of QDs, and interface engineering with the use of organic or inorganic thin layer overcoating the sensitized photoanode have been overviewed in this perspective. Also, the possible accesses to better performance (higher efficiency and stability) of the QDSCs have been proposed on the basis of achievements obtained previously.

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center