Send to

Choose Destination
Genes Nutr. 2015 Jul;10(4):466. doi: 10.1007/s12263-015-0466-2. Epub 2015 May 19.

The genomics of micronutrient requirements.

Author information

Department of Pediatrics, Faculty of Medicine, Nutrition and Metabolism, University of São Paulo, Bandeirantes Avenue, HCFMRP Campus USP, 3900, Ribeirão Preto, SP, 14049-900, Brazil,


Healthy nutrition is accepted as a cornerstone of public health strategies for reducing the risk of noncommunicable conditions such as obesity, cardiovascular disease, and related morbidities. However, many research studies continue to focus on single or at most a few factors that may elicit a metabolic effect. These reductionist approaches resulted in: (1) exaggerated claims for nutrition as a cure or prevention of disease; (2) the wide use of empirically based dietary regimens, as if one fits all; and (3) frequent disappointment of consumers, patients, and healthcare providers about the real impact nutrition can make on medicine and health. Multiple factors including environment, host and microbiome genetics, social context, the chemical form of the nutrient, its (bio)availability, and chemical and metabolic interactions among nutrients all interact to result in nutrient requirement and in health outcomes. Advances in laboratory methodologies, especially in analytical and separation techniques, are making the chemical dissection of foods and their availability in physiological tissues possible in an unprecedented manner. These omics technologies have opened opportunities for extending knowledge of micronutrients and of their metabolic and endocrine roles. While these technologies are crucial, more holistic approaches to the analysis of physiology and environment, novel experimental designs, and more sophisticated computational methods are needed to advance our understanding of how nutrition influences health of individuals.

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center