Send to

Choose Destination
Neuroimage. 2014 Nov 1;101:404-15. doi: 10.1016/j.neuroimage.2014.07.022. Epub 2014 Jul 17.

Interregional alpha-band synchrony supports temporal cross-modal integration.

Author information

Department of Psychology, University of Amsterdam, The Netherlands; The Amsterdam Brain and Cognition Center, University of Amsterdam, The Netherlands. Electronic address:
Department of Cognitive Psychology, VU University Amsterdam, The Netherlands.
Department of Psychology, University of Amsterdam, The Netherlands.


In a continuously changing environment, time is a key property that tells us whether information from the different senses belongs together. Yet, little is known about how the brain integrates temporal information across sensory modalities. Using high-density EEG combined with a novel psychometric timing task in which human subjects evaluated durations of audiovisual stimuli, we show that the strength of alpha-band (8-12 Hz) phase synchrony between localizer-defined auditory and visual regions depended on cross-modal attention: during encoding of a constant 500 ms standard interval, audiovisual alpha synchrony decreased when subjects attended audition while ignoring vision, compared to when they attended both modalities. In addition, alpha connectivity during a variable target interval predicted the degree to which auditory stimulus duration biased time estimation while attending vision. This cross-modal interference effect was estimated using a hierarchical Bayesian model of a psychometric function that also provided an estimate of each individual's tendency to exhibit attention lapses. This lapse rate, in turn, was predicted by single-trial estimates of the stability of interregional alpha synchrony: when attending to both modalities, trials with greater stability in patterns of connectivity were characterized by reduced contamination by lapses. Together, these results provide new insights into a functional role of the coupling of alpha phase dynamics between sensory cortices in integrating cross-modal information over time.


Alpha-band; Cross-modal integration; Functional connectivity; Phase synchrony; Time perception

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center