Format

Send to

Choose Destination
Nat Commun. 2014 Apr 23;5:3727. doi: 10.1038/ncomms4727.

Realization of a spin-wave multiplexer.

Author information

1
1] Fachbereich Physik and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany [2] Graduate School of Excellence "MAterials science IN mainZ", Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern, Germany.
2
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
3
1] Fachbereich Physik and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany [2] Institut für Ionenstrahlphysik und Materialforschung, Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany.
4
1] Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA [2] Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA.
5
Fachbereich Physik and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany.
6
1] Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA [2] Institut für Ionenstrahlphysik und Materialforschung, Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany.

Abstract

Recent developments in the field of spin dynamics--like the interaction of charge and heat currents with magnons, the quasi-particles of spin waves--opens the perspective for novel information processing concepts and potential applications purely based on magnons without the need of charge transport. The challenges related to the realization of advanced concepts are the spin-wave transport in two-dimensional structures and the transfer of existing demonstrators to the micro- or even nanoscale. Here we present the experimental realization of a microstructured spin-wave multiplexer as a fundamental building block of a magnon-based logic. Our concept relies on the generation of local Oersted fields to control the magnetization configuration as well as the spin-wave dispersion relation to steer the spin-wave propagation in a Y-shaped structure. Thus, the present work illustrates unique features of magnonic transport as well as their possible utilization for potential technical applications.

PMID:
24759754
DOI:
10.1038/ncomms4727

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center