Format

Send to

Choose Destination
Evolution. 2014 Apr;68(4):996-1013. doi: 10.1111/evo.12322. Epub 2014 Jan 30.

The complex evolutionary history of seeing red: molecular phylogeny and the evolution of an adaptive visual system in deep-sea dragonfishes (Stomiiformes: Stomiidae).

Author information

1
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138. ckenaley@fas.harvard.edu.

Abstract

The vast majority of deep-sea fishes have retinas composed of only rod cells sensitive to only shortwave blue light, approximately 480-490 nm. A group of deep-sea dragonfishes, the loosejaws (family Stomiidae), possesses far-red emitting photophores and rhodopsins sensitive to long-wave emissions greater than 650 nm. In this study, the rhodopsin diversity within the Stomiidae is surveyed based on an analysis of rod opsin-coding sequences from representatives of 23 of the 28 genera. Using phylogenetic inference, fossil-calibrated estimates of divergence times, and a comparative approach scanning the stomiid phylogeny for shared genotypes and substitution histories, we explore the evolution and timing of spectral tuning in the family. Our results challenge both the monophyly of the family Stomiidae and the loosejaws. Despite paraphyly of the loosejaws, we infer for the first time that far-red visual systems have a single evolutionary origin within the family and that this shift in phenotype occurred at approximately 15.4 Ma. In addition, we found strong evidence that at approximately 11.2 Ma the most recent common ancestor of two dragonfish genera reverted to a primitive shortwave visual system during its evolution from a far-red sensitive dragonfish. According to branch-site tests for adaptive evolution, we hypothesize that positive selection may be driving spectral tuning in the Stomiidae. These results indicate that the evolutionary history of visual systems in deep-sea species is complex and a more thorough understanding of this system requires an integrative comparative approach.

KEYWORDS:

Ancestral state estimation; fossil calibration; molecular evolution; rhodopsin; spectral tuning

PMID:
24274363
DOI:
10.1111/evo.12322
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center