Format

Send to

Choose Destination
Phys Rev Lett. 2012 Dec 7;109(23):237204. Epub 2012 Dec 4.

Thermoelectric detection of spin waves.

Author information

1
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.

Abstract

We report on the thermoelectric detection of spin waves in Permalloy stripes via the anomalous Nernst effect. Spin waves are locally excited by a dynamic magnetic field generated from a microwave current flowing in a coplanar waveguide placed on top of a Permalloy stripe, which acts as a waveguide for spin waves. Electric contacts at the ends of the Permalloy stripe measure a dc voltage generated along the stripe. Magnetic field sweeps for different applied microwave frequencies reveal, with a remarkable signal-to-noise ratio, an electric voltage signature characteristic of spin-wave excitations. The symmetry of the signal with respect to the applied magnetic field direction indicates that the anomalous Nernst effect is responsible; Seebeck effects, anisotropic magnetoresistance, and voltages due to spin-motive forces are excluded. The dissipation of spin waves causes local heating that drains into the substrate, giving rise to a temperature gradient perpendicular to the sample plane, resulting in the anomalous Nernst voltage.

Supplemental Content

Full text links

Icon for American Physical Society
Loading ...
Support Center