Format

Send to

Choose Destination
Bioinformatics. 2012 Mar 15;28(6):876-7. doi: 10.1093/bioinformatics/bts054. Epub 2012 Feb 2.

Hadoop-BAM: directly manipulating next generation sequencing data in the cloud.

Author information

1
Aalto University, Department of Information and Computer Science, Aalto, Finland. matti.niemenmaa@aalto.fi

Abstract

Hadoop-BAM is a novel library for the scalable manipulation of aligned next-generation sequencing data in the Hadoop distributed computing framework. It acts as an integration layer between analysis applications and BAM files that are processed using Hadoop. Hadoop-BAM solves the issues related to BAM data access by presenting a convenient API for implementing map and reduce functions that can directly operate on BAM records. It builds on top of the Picard SAM JDK, so tools that rely on the Picard API are expected to be easily convertible to support large-scale distributed processing. In this article we demonstrate the use of Hadoop-BAM by building a coverage summarizing tool for the Chipster genome browser. Our results show that Hadoop offers good scalability, and one should avoid moving data in and out of Hadoop between analysis steps.

PMID:
22302568
PMCID:
PMC3307120
DOI:
10.1093/bioinformatics/bts054
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center