Send to

Choose Destination
J Biomol Struct Dyn. 2012;29(5):843-61.

The roles of intrinsic disorder in orchestrating the Wnt-pathway.

Author information

Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA.


The canonical Wnt-pathway plays a number of crucial roles in the development of organism. Malfunctions of this pathway lead to various diseases including cancer. In the inactivated state, this pathway involves five proteins, Axin, CKI-α, GSK-3β, APC, and β-catenin. We analyzed these proteins by a number of computational tools, such as PONDR(r)VLXT, PONDR(r)VSL2, MoRF-II predictor and Hydrophobic Cluster Analysis (HCA) to show that each of the Wnt-pathway proteins contains several intrinsically disordered regions. Based on a comprehensive analysis of published data we conclude that these disordered regions facilitate protein-protein interactions, post-translational modifications, and signaling. The scaffold protein Axin and another large protein, APC, act as flexible concentrators in gathering together all other proteins involved in the Wnt-pathway, emphasizing the role of intrinsically disordered regions in orchestrating the complex protein-protein interactions. We further explore the intricate roles of highly disordered APC in regulation of β-catenin function. Intrinsically disordered APC helps the collection of β-catenin from cytoplasm, facilitates the b-catenin delivery to the binding sites on Axin, and controls the final detachment of β-catenin from Axin.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center