Format

Send to

Choose Destination
Front Neurosci. 2009 May 1;3(1):8-14. doi: 10.3389/neuro.01.002.2009. eCollection 2009 May.

Bursts generate a non-reducible spike-pattern code.

Author information

1
Bernstein Center for Computational Neuroscience and Institute for Theoretical Biology, Department of Biology, Humboldt Universit├Ąt Berlin, Germany.

Abstract

At the single-neuron level, precisely timed spikes can either constitute firing-rate codes or spike-pattern codes that utilize the relative timing between consecutive spikes. There has been little experimental support for the hypothesis that such temporal patterns contribute substantially to information transmission. By using grasshopper auditory receptors as a model system, we show that correlations between spikes can be used to represent behaviorally relevant stimuli. The correlations reflect the inner structure of the spike train: a succession of burst-like patterns. We demonstrate that bursts with different spike counts encode different stimulus features, such that about 20% of the transmitted information corresponds to discriminating between different features, and the remaining 80% is used to allocate these features in time. In this spike-pattern code, the what and the when of the stimuli are encoded in the duration of each burst and the time of burst onset, respectively. Given the ubiquity of burst firing, we expect similar findings also for other neural systems.

KEYWORDS:

auditory receptor; burst spiking; information theory; neural code; sensory encoding

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center