Format

Send to

Choose Destination
J Dairy Sci. 2009 Jun;92(6):2822-34. doi: 10.3168/jds.2008-1865.

Effect of source of rumen-degraded protein on production and ruminal metabolism in lactating dairy cows.

Author information

1
Agricultural Research Service, USDA, US Dairy Forage Research Center, 1925 Linden Drive West, Madison, Wisconsin 53706, USA. glen.broderick@ars.usda.gov

Abstract

Twenty-eight (8 with ruminal cannulas) lactating Holstein cows were assigned to seven 4 x 4 Latin squares in a 16-wk trial to study the effects on production and ruminal metabolism of feeding differing proportions of rumen-degraded protein (RDP) from soybean meal and urea. Diets contained [dry matter (DM) basis] 40% corn silage, 15% alfalfa silage, 28 to 30% high-moisture corn, plus varying levels of ground dry shelled corn, solvent- and lignosulfonate-treated soybean meal, and urea. Proportions of the soybean meals, urea, and dry corn were adjusted such that all diets contained 16.1% crude protein and 10.5% RDP, with urea providing 0, 1.2, 2.4, and 3.7% RDP (DM basis). As urea supplied greater proportions of RDP, there were linear decreases in DM intake, yield of milk, 3.5% fat-corrected milk, fat, protein, and solids-not-fat, and of weight gain. Milk contents of fat, protein, and solids-not-fat were not affected by source of RDP. Replacing soybean meal RDP with urea RDP resulted in several linear responses: increased excretion of urinary urea-N and concentration of milk urea-N, blood urea-N, and ruminal ammonia-N and decreased excretion of fecal N; there was also a trend for increased excretion of total urinary N. A linear increase in neutral detergent fiber (NDF) digestibility, probably due to digestion of NDF-N from lignosulfonate-treated soybean meal, was observed with greater urea intake. Omasal sampling revealed small but significant effects of N source on measured RDP supply, which averaged 11.0% (DM basis) across diets. Increasing the proportion of RDP from urea resulted in linear decrease in omasal flow of dietary nonammonia N (NAN) and microbial NAN and in microbial growth efficiency (microbial NAN/unit of organic matter truly digested in the rumen). These changes were paralleled by large linear reductions in omasal flows of essential, nonessential, and total amino acids. Overall, these results indicated that replacing soybean meal RDP with that from urea reduced yield of milk and milk components, largely because of depressed microbial protein formation in the rumen and that RDP from nonprotein-N sources was not as effective as RDP provided by true protein.

PMID:
19448016
DOI:
10.3168/jds.2008-1865
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center