Send to

Choose Destination
Opt Express. 2001 Jan 29;8(3):173-90.

Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis.


We describe a fully-vectorial, three-dimensional algorithm to compute the definite-frequency eigenstates of Maxwell's equations in arbitrary periodic dielectric structures, including systems with anisotropy (birefringence) or magnetic materials, using preconditioned block-iterative eigensolvers in a planewave basis. Favorable scaling with the system size and the number of computed bands is exhibited. We propose a new effective dielectric tensor for anisotropic structures, and demonstrate that O Delta x;2 convergence can be achieved even in systems with sharp material discontinuities. We show how it is possible to solve for interior eigenvalues, such as localized defect modes, without computing the many underlying eigenstates. Preconditioned conjugate-gradient Rayleigh-quotient minimization is compared with the Davidson method for eigensolution, and a number of iteration variants and preconditioners are characterized. Our implementation is freely available on the Web.


Supplemental Content

Full text links

Icon for Optical Society of America
Loading ...
Support Center