Send to

Choose Destination
J Biol Chem. 2009 Feb 13;284(7):4392-7. doi: 10.1074/jbc.M808202200. Epub 2008 Dec 16.

Identification of a gatekeeper residue that prevents dehydrogenases from acting as oxidases.

Author information

Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.


The oxygen reactivity of flavoproteins is poorly understood. Here we show that a single Ala to Gly substitution in l-galactono-gamma-lactone dehydrogenase (GALDH) turns the enzyme into a catalytically competent oxidase. GALDH is an aldonolactone oxidoreductase with a vanillyl-alcohol oxidase (VAO) fold. We found that nearly all oxidases in the VAO family contain either a Gly or a Pro at a structurally conserved position near the C4a locus of the isoalloxazine moiety of the flavin, whereas dehydrogenases prefer another residue at this position. Mutation of the corresponding residue in GALDH (Ala-113 --> Gly) resulted in a striking 400-fold increase in oxygen reactivity, whereas the cytochrome c reductase activity is retained. The activity of the A113G variant shows a linear dependence on oxygen concentration (k(ox) = 3.5 x 10(5) m(-1) s(-1)), similar to most other flavoprotein oxidases. The Ala-113 --> Gly replacement does not change the reduction potential of the flavin but creates space for molecular oxygen to react with the reduced flavin. In the wild-type enzyme, Ala-113 acts as a gatekeeper, preventing oxygen from accessing the isoalloxazine nucleus. The presence of such an oxygen access gate seems to be a key factor for the prevention of oxidase activity within the VAO family and is absent in members that act as oxidases.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center