Format

Send to

Choose Destination
Cell Metab. 2007 May;5(5):383-93.

Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia.

Author information

1
Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA.

Abstract

The importance of neuropeptides in the hypothalamus has been experimentally established. Due to difficulties in assessing function in vivo, the roles of the fast-acting neurotransmitters glutamate and GABA are largely unknown. Synaptic vesicular transporters (VGLUTs for glutamate and VGAT for GABA) are required for vesicular uptake and, consequently, synaptic release of neurotransmitters. Ventromedial hypothalamic (VMH) neurons are predominantly glutamatergic and express VGLUT2. To evaluate the role of glutamate release from VMH neurons, we generated mice lacking VGLUT2 selectively in SF1 neurons (a major subset of VMH neurons). These mice have hypoglycemia during fasting secondary to impaired fasting-induced increases in the glucose-raising pancreatic hormone glucagon and impaired induction in liver of mRNAs encoding PGC-1alpha and the gluconeogenic enzymes PEPCK and G6Pase. Similarly, these mice have defective counterregulatory responses to insulin-induced hypoglycemia and 2-deoxyglucose (an antimetabolite). Thus, glutamate release from VMH neurons is an important component of the neurocircuitry that functions to prevent hypoglycemia.

PMID:
17488640
PMCID:
PMC1934926
DOI:
10.1016/j.cmet.2007.04.001
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center