Format

Send to

Choose Destination
BMC Genomics. 2007 Apr 3;8:90.

De novo identification of LTR retrotransposons in eukaryotic genomes.

Author information

1
Department of Computer Science, Indiana University, Bloomington, IN 47405, USA. mrho@indiana.edu

Abstract

BACKGROUND:

LTR retrotransposons are a class of mobile genetic elements containing two similar long terminal repeats (LTRs). Currently, LTR retrotransposons are annotated in eukaryotic genomes mainly through the conventional homology searching approach. Hence, it is limited to annotating known elements.

RESULTS:

In this paper, we report a de novo computational method that can identify new LTR retrotransposons without relying on a library of known elements. Specifically, our method identifies intact LTR retrotransposons by using an approximate string matching technique and protein domain analysis. In addition, it identifies partially deleted or solo LTRs using profile Hidden Markov Models (pHMMs). As a result, this method can de novo identify all types of LTR retrotransposons. We tested this method on the two pairs of eukaryotic genomes, C. elegans vs. C. briggsae and D. melanogaster vs. D. pseudoobscura. LTR retrotransposons in C. elegans and D. melanogaster have been intensively studied using conventional annotation methods. Comparing with previous work, we identified new intact LTR retroelements and new putative families, which may imply that there may still be new retroelements that are left to be discovered even in well-studied organisms. To assess the sensitivity and accuracy of our method, we compared our results with a previously published method, LTR_STRUC, which predominantly identifies full-length LTR retrotransposons. In summary, both methods identified comparable number of intact LTR retroelements. But our method can identify nearly all known elements in C. elegans, while LTR_STRUCT missed about 1/3 of them. Our method also identified more known LTR retroelements than LTR_STRUCT in the D. melanogaster genome. We also identified some LTR retroelements in the other two genomes, C. briggsae and D. pseudoobscura, which have not been completely finished. In contrast, the conventional method failed to identify those elements. Finally, the phylogenetic and chromosomal distributions of the identified elements are discussed.

CONCLUSION:

We report a novel method for de novo identification of LTR retrotransposons in eukaryotic genomes with favorable performance over the existing methods.

PMID:
17407597
PMCID:
PMC1858694
DOI:
10.1186/1471-2164-8-90
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center