Send to

Choose Destination
Mol Cell Biol. 2007 Mar;27(5):1696-705. Epub 2006 Dec 18.

Neuropilin-1 is a direct target of the transcription factor E2F1 during cerebral ischemia-induced neuronal death in vivo.

Author information

NRC Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Bldg. M-54, Ottawa, ON, Canada.


The nuclear transcription factor E2F1 plays an important role in modulating neuronal death in response to excitotoxicity and cerebral ischemia. Here, by comparing gene expression in brain cortices from E2F1(+/+) and E2F1(-/-) mice using a custom high-density DNA microarray, we identified a group of putative E2F1 target genes that might be responsible for ischemia-induced E2F1-dependent neuronal death. Neuropilin 1 (NRP-1), a receptor for semaphorin 3A-mediated axon growth cone collapse and retraction, was confirmed to be a direct target of E2F1 based on (i) the fact that the NRP-1 promoter sequence contains an E2F1 binding site, (ii) reactivation of NRP-1 expression in E2F1(-/-) neurons when the E2F1 gene was replaced, (iii) activation of the NRP-1 promoter by E2F1 in a luciferase reporter assay, (iv) electrophoretic mobility gel shift analysis confirmation of the presence of an E2F binding sequence in the NRP-1 promoter, and (v) the fact that a chromatin immunoprecipitation assay showed that E2F1 binds directly to the endogenous NRP-1 promoter. Interestingly, the temporal induction in cerebral ischemia-induced E2F1 binding to the NRP-1 promoter correlated with the temporal-induction profile of NRP-1 mRNA, confirming that E2F1 positively regulates NRP-1 during cerebral ischemia. Functional analysis also showed that NRP-1 receptor expression was extremely low in E2F1(-/-) neurons, which led to the diminished response to semaphorin 3A-induced axonal shortening and neuronal death. An NRP-1 selective peptide inhibitor provided neuroprotection against oxygen-glucose deprivation. Taken together, these findings support a model in which E2F1 targets NRP-1 to modulate axonal damage and neuronal death in response to cerebral ischemia.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center