Send to

Choose Destination
Genome Res. 2006 Sep;16(9):1126-35. Epub 2006 Aug 9.

Predicting essential genes in fungal genomes.

Author information

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.


Essential genes are required for an organism's viability, and the ability to identify these genes in pathogens is crucial to directed drug development. Predicting essential genes through computational methods is appealing because it circumvents expensive and difficult experimental screens. Most such prediction is based on homology mapping to experimentally verified essential genes in model organisms. We present here a different approach, one that relies exclusively on sequence features of a gene to estimate essentiality and offers a promising way to identify essential genes in unstudied or uncultured organisms. We identified 14 characteristic sequence features potentially associated with essentiality, such as localization signals, codon adaptation, GC content, and overall hydrophobicity. Using the well-characterized baker's yeast Saccharomyces cerevisiae, we employed a simple Bayesian framework to measure the correlation of each of these features with essentiality. We then employed the 14 features to learn the parameters of a machine learning classifier capable of predicting essential genes. We trained our classifier on known essential genes in S. cerevisiae and applied it to the closely related and relatively unstudied yeast Saccharomyces mikatae. We assessed predictive success in two ways: First, we compared all of our predictions with those generated by homology mapping between these two species. Second, we verified a subset of our predictions with eight in vivo knockouts in S. mikatae, and we present here the first experimentally confirmed essential genes in this species.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center