Format

Send to

Choose Destination
J Cell Biochem. 1991 Feb;45(2):224-37.

Inhibition of virus-induced cell fusion by apolipoprotein A-I and its amphipathic peptide analogs.

Author information

1
Department of Microbiology, University of Alabama, Birmingham 35294.

Abstract

Apolipoprotein A-I (apoA-I), the major protein component of serum high-density lipoproteins (HDL), was found to inhibit herpes simplex virus (HSV)-induced cell fusion at physiological (approximately 1 microM) concentrations, whereas HDL did not exert any inhibitory effect. Lipid-associating, synthetic amphipathic peptides corresponding to residues 1-33 (apoA-I[1-33]) or residues 66-120 (apoA-I[66-120]) of apoA-I, also inhibited HSV-induced cell fusion, whereas a peptide corresponding to residues 8-33 of apoA-I (apoA-I[8-33]), which fails to associate with lipids, did not exert any inhibitory effect. These results suggest that lipid binding may be a prerequisite for peptide-mediated fusion inhibition. Consistent with this idea, a series of lipid-binding 22-amino-acid-residue-long synthetic amphipathic peptides that correspond to the amphipathic helical domains of apoA-I (A-I consensus series), or 18-residue-long model amphipathic peptides (18A series), were found to exert variable levels of fusion-inhibitory activity. The extent of fusion-inhibitory activity did not correlate with hydrophobic moment, hydrophobicity of the nonpolar face, helix-forming ability, or lipid affinity of the different peptides. Peptides in which the nonpolar face was not interrupted by a charged residue displayed greater fusion-inhibitory activity. Also, the presence of positively charged residues at the polar-nonpolar interface was found to correlate with higher fusion-inhibitory activity.

PMID:
1647394
DOI:
10.1002/jcb.240450214
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center