Format

Send to

Choose Destination
Neuroimage. 2004;23 Suppl 1:S275-88.

Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy.

Author information

1
Anthinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.

Abstract

Near-infrared spectroscopy (NIRS) and diffuse optical imaging (DOI) are finding widespread application in the study of human brain activation, motivating further application-specific development of the technology. NIRS and DOI offer the potential to quantify changes in deoxyhemoglobin (HbR) and total hemoglobin (HbT) concentration, thus enabling distinction of oxygen consumption and blood flow changes during brain activation. While the techniques implemented presently provide important results for cognition and the neurosciences through their relative measures of HbR and HbT concentrations, there is much to be done to improve sensitivity, accuracy, and resolution. In this paper, we review the advances currently being made and issues to consider for improving optical image quality. These include the optimal selection of wavelengths to minimize random and systematic error propagation in the calculation of the hemoglobin concentrations, the filtering of systemic physiological signal clutter to improve sensitivity to the hemodynamic response to brain activation, the implementation of overlapping measurements to improve image spatial resolution and uniformity, and the utilization of spatial prior information from structural and functional MRI to reduce DOI partial volume error and improve image quantitative accuracy.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center