Send to

Choose Destination
J Immunol. 2004 Aug 1;173(3):1731-7.

A synthetic peptide homologous to functional domain of human IL-10 down-regulates expression of MHC class I and Transporter associated with Antigen Processing 1/2 in human melanoma cells.

Author information

Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.


Tumor cells treated with IL-10 were shown to have decreased, but peptide-inducible expression of MHC class I, decreased sensitivity to MHC class I-restricted CTL, and increased NK sensitivity. These findings could be explained, at least partially, by a down-regulation of TAP1/TAP2 expression. In this study, IT9302, a nanomeric peptide (AYMTMKIRN), homologous to the C-terminal of the human IL-10 sequence, was demonstrated to mimic these previously described IL-10 effects on MHC class I-related molecules and functions. We observed a dose-dependent down-regulation of MHC class I at the cell surface of melanoma cells after 24-h treatment with IT9302. The IL-10 homologue peptide also caused a dose-dependent inhibition of the IFN-gamma-mediated surface induction of MHC class I in a melanoma cell line. We demonstrated, using Western blot and flow cytometry, that IT9302 inhibits the expression of TAP1 and TAP2 proteins, but not MHC class I H chain or low molecular protein molecules. Finally, peptide-treated melanoma cells were shown to be more sensitive to lysis by NK cells in a dose-dependent way. Taken together, these results demonstrate that a small synthetic peptide derived from IL-10 can mimic the Ag presentation-related effects mediated by this cytokine in human melanomas and increase tumor sensitivity to NK cells, which can be relevant in the designing of future strategies for cancer immune therapy.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center