Send to

Choose Destination
J Biol Chem. 2004 May 21;279(21):22057-65. Epub 2004 Mar 15.

Activation of peroxisome proliferator-activated receptor gamma inhibits interleukin-1beta-induced membrane-associated prostaglandin E2 synthase-1 expression in human synovial fibroblasts by interfering with Egr-1.

Author information

Osteoarthritis Research Unit, Centre Hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Canada.


Membrane-associated prostaglandin (PG) E(2) synthase-1 (mPGES-1) catalyzes the conversion of PGH(2) to PGE(2), which contributes to many biological processes. Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated transcription factor and plays an important role in growth, differentiation, and inflammation in different tissues. Here, we examined the effect of PPARgamma ligands on interleukin-1beta (IL-1beta)-induced mPGES-1 expression in human synovial fibroblasts. PPARgamma ligands 15-deoxy-Delta(12,14) prostaglandin J(2) (15d-PGJ(2)) and the thiazolidinedione troglitazone (TRO), but not PPARalpha ligand Wy14643, dose-dependently suppressed IL-1beta-induced PGE(2) production, as well as mPGES-1 protein and mRNA expression. 15d-PGJ(2) and TRO suppressed IL-1beta-induced activation of the mPGES-1 promoter. Overexpression of wild-type PPARgamma further enhanced, whereas overexpression of a dominant negative PPARgamma alleviated, the suppressive effect of both PPARgamma ligands. Furthermore, pretreatment with an antagonist of PPARgamma, GW9662, relieves the suppressive effect of PPARgamma ligands on mPGES-1 protein expression, suggesting that the inhibition of mPGES-1 expression is mediated by PPARgamma. We demonstrated that PPARgamma ligands suppressed Egr-1-mediated induction of the activities of the mPGES-1 promoter and of a synthetic reporter construct containing three tandem repeats of an Egr-1 binding site. The suppressive effect of PPARgamma ligands was enhanced in the presence of a PPARgamma expression plasmid. Electrophoretic mobility shift and supershift assays for Egr-1 binding sites in the mPGES-1 promoter showed that both 15d-PGJ(2) and TRO suppressed IL-1beta-induced DNA-binding activity of Egr-1. These data define mPGES-1 and Egr-1 as novel targets of PPARgamma and suggest that inhibition of mPGES-1 gene transcription may be one of the mechanisms by which PPARgamma regulates inflammatory responses.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center