Send to

Choose Destination

GIBBERELLIN BIOSYNTHESIS: Enzymes, Genes and Their Regulation.

Author information

IACR-Long Ashton Research Station, Department of Agricultural Science, University of Bristol, Bristol, BS18 9AF, United Kingdom, Frontier Research Program, The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama 351-01, Japan.


The recent impressive progress in research on gibberellin (GA) biosynthesis has resulted primarily from cloning of genes encoding biosynthetic enzymes and studies with GA-deficient and GA-insensitive mutants. Highlights include the cloning of ent-copalyl diphosphate synthase and ent-kaurene synthase (formally ent-kaurene synthases A and B) and the demonstration that the former is targeted to the plastid; the finding that the Dwarf-3 gene of maize encodes a cytochrome P450, although of unknown function; and the cloning of GA 20-oxidase and 3beta-hydroxylase genes. The availability of cDNA and genomic clones for these enzymes is enabling the mechanisms by which GA concentrations are regulated by environmental and endogenous factors to be studied at the molecular level. For example, it has been shown that transcript levels for GA 20-oxidase and 3beta-hydroxylase are subject to feedback regulation by GA action and, in the case of the GA 20-oxidase, are regulated by light. Also discussed is other new information, particularly from mutants, that has added to our understanding of the biosynthetic pathway, the enzymes, and their regulation and tissue localization.

LinkOut - more resources

Full Text Sources

Other Literature Sources

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center