Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16261-6. Epub 2002 Dec 2.

The spatial receptive field of thalamic inputs to single cortical simple cells revealed by the interaction of visual and electrical stimulation.

Author information

1
Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA. pkara@hms.harvard.edu

Abstract

Electrical stimulation of the thalamus has been widely used to test for the existence of monosynaptic input to cortical neurons, typically with stimulation currents that evoke cortical spikes with high probability. We stimulated the lateral geniculate nucleus (LGN) of the thalamus and recorded monosynaptically evoked spikes from layer 4 neurons in visual cortex. We found that with moderate currents, cortical spikes were evoked with low to moderate probability and their occurrence was modulated by ongoing sensory (visual) input. Furthermore, when repeated at 8-12 Hz, electrical stimulation of the thalamic afferents caused such profound inhibition that cortical spiking activity was suppressed, aside from electrically evoked monosynaptic spikes. Visual input to layer 4 cortical cells between electrical stimuli must therefore have derived exclusively from LGN afferents. We used white-noise visual stimuli to make a 2D map of the receptive field of each cortical simple cell during repetitive electrical stimulation in the LGN. The receptive field of electrically evoked monosynaptic spikes (and thus of the thalamic input alone) was significantly elongated. Its primary subfield was comparable to that of the control receptive field, but secondary (flanking) subfields were weaker. These findings extend previous results from intracellular recordings, but also demonstrate the effectiveness of an extracellular method of measuring subthreshold afferent input to cortex.

PMID:
12461179
PMCID:
PMC138599
DOI:
10.1073/pnas.242625499
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center