Send to

Choose Destination
J Cell Sci. 2002 Dec 1;115(Pt 23):4707-18.

The centrosome is a dynamic structure that ejects PCM flares.

Author information

Department of Biology, Indiana University, Bloomington, IN 47405, USA.


The Drosophila Centrosomin (Cnn) protein is an essential core component of centrosomes in the early embryo. We have expressed a Cnn-GFP fusion construct in cleavage stage embryos, which rescues the maternal effect lethality of cnn mutant animals. The localization patterns seen with GFP-Cnn are identical to the patterns we see by immunofluorescent staining with anti-Cnn antibodies. Live imaging of centrosomes with Cnn-GFP reveals surprisingly dynamic features of the centrosome. Extracentrosomal particles of Cnn move radially from the centrosome and frequently change their direction. D-TACC colocalized with Cnn at these particles. We have named these extrusions 'flares'. Flares are dependent on microtubules, since disruption of the microtubule array severs the movement of these particles. Movement of flare particles is cleavage-cycle-dependent and appears to be attributed mostly to their association with dynamic astral microtubules. Flare activity decreases at metaphase, then increases at telophase and remains at this higher level of activity until the next metaphase. Flares appear to be similar to vertebrate PCM-1-containing 'centriolar satellites' in their behavior. By injecting rhodamine-actin, we observed that flares extend no farther than the actin cage. Additionally, disruption of the microfilament array increased the extent of flare movement. These observations indicate that centrosomes eject particles of Cnn-containing pericentriolar material that move on dynamic astral microtubules at a rate that varies with the cell cycle. We propose that flare particles play a role in organizing the actin cytoskeleton during syncytial cleavage.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center