Format

Send to

Choose Destination
Chem Biol. 2000 Nov;7(11):821-31.

The NDP-sugar co-substrate concentration and the enzyme expression level influence the substrate specificity of glycosyltransferases: cloning and characterization of deoxysugar biosynthetic genes of the urdamycin biosynthetic gene cluster.

Author information

1
Christian-Albrechts-Universität zu Kiel. Pharmazeutische Biologie, Kiel, Germany.

Abstract

BACKGROUND:

Streptomyces fradiae is the principal producer of urdamycin A. The antibiotic consists of a polyketide-derived aglycone, which is glycosylated with four sugar components, 2x D-olivose (first and last sugar of a C-glycosidically bound trisaccharide chain at the 9-position), and 2x L-rhodinose (in the middle of the trisaccharide chain and at the 12b-position). Limited information is available about both the biosynthesis of D-olivose and L-rhodinose and the influence of the concentration of both sugars on urdamycin biosynthesis.

RESULTS:

To further investigate urdamycin biosynthesis, a 5.4 kb section of the urdamycin biosynthetic gene cluster was sequenced. Five new open reading frames (ORFs) (urdZ3, urdQ, urdR, urdS, urdT) could be identified each one showing significant homology to deoxysugar biosynthetic genes. We inactivated four of these newly allocated ORFs (urdZ3, urdQ, urdR, urdS) as well as urdZ1, a previously found putative deoxysugar biosynthetic gene. Inactivation of urdZ3, urdQ and urdZ1 prevented the mutant strains from producing L-rhodinose resulting in the accumulation of mainly urdamycinone B. Inactivation of urdR led to the formation of the novel urdamycin M, which carries a C-glycosidically attached D-rhodinose at the 9-position. The novel urdamycins N and O were detected after overexpression of urdGT1c in two different chromosomal urdGT1c deletion mutants. The mutants lacking urdS and urdQ accumulated various known diketopiperazines.

CONCLUSIONS:

Analysis of deoxysugar biosynthetic genes of the urdamycin biosynthetic gene cluster revealed a widely common biosynthetic pathway leading to D-olivose and L-rhodinose. Several enzymes responsible for specific steps of this pathway could be assigned. The pathway had to be modified compared to earlier suggestions. Two glycosyltransferases normally involved in the C-glycosyltransfer of D-olivose at the 9-position (UrdGT2) and in conversion of 100-2 to urdamycin G (UrdGT1c) show relaxed substrate specificity for their activated deoxysugar co-substrate and their alcohol substrate, respectively. They can transfer activated D-rhodinose (instead of D-olivose) to the 9-position, and attach L-rhodinose to the 4A-position normally occupied by a D-olivose unit, respectively.

PMID:
11094336
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center