Send to

Choose Destination
Tree Physiol. 1999 Nov 1;19(13):871-878.

Foliar temperature-respiration response functions for broad-leaved tree species in the southern Appalachians.

Author information

Department of Forest Resources, University of Minnesota, 1530 Cleveland Avenue N., St. Paul, MN 55108, USA.


We measured leaf respiration in 18 eastern deciduous forest tree species to determine if there were differences in temperature-respiration response functions among species or among canopy positions. Leaf respiration rates were measured in situ and on detached branches for Acer pensylvanicum L., A. rubrum L., Betula spp. (B. alleghaniensis Britt. and B. lenta L.), Carya glabra (Mill.) Sweet, Cornus florida L., Fraxinus spp. (primarily F. americana L.), Liriodendron tulipifera L., Magnolia fraseri Walt., Nyssa sylvatica Marsh., Oxydendrum arboreum L., Platanus occidentalis L., Quercus alba L., Q. coccinea Muenchh., Q. prinus L., Q. rubra L., Rhododendron maximum L., Robinia psuedoacacia L., and Tilia americana L. in the southern Appalachian Mountains, USA. Dark respiration was measured on fully expanded leaves at 10, 15, 20, 25, and 30 degrees C with an infrared gas analyzer equipped with a temperature-controlled cuvette. Temperature-respiration response functions were fit for each leaf. There were significant differences in response functions among species and by canopy position within species. These differences were observed when respiration was expressed on a mass, nitrogen, or area basis. Cumulative nighttime leaf respiration was calculated and averaged over ten randomly selected nights for each leaf. Differences in mean cumulative nighttime respiration were statistically significant among canopy positions and species. We conclude that effects of canopy position and species on temperature-respiration response functions may need to be considered when making estimates of whole-tree or canopy respiration.


Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center