Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 45

1.

Cyclic tensile force stimulates BMP9 synthesis and in vitro mineralization by human periodontal ligament cells.

Tantilertanant Y, Niyompanich J, Everts V, Supaphol P, Pavasant P, Sanchavanakit N.

J Cell Physiol. 2018 Sep 12. doi: 10.1002/jcp.27257. [Epub ahead of print]

PMID:
30206934
2.

Performance of Electropun Polyacrylonitrile Nanofibrous Phases, Shown for the Separation of Water-Soluble Food Dyes via UTLC-Vis-ESI-MS.

Niamlang P, Supaphol P, Morlock GE.

Nanomaterials (Basel). 2017 Aug 10;7(8). pii: E218. doi: 10.3390/nano7080218.

3.

The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering.

Chuenjitkuntaworn B, Osathanon T, Nowwarote N, Supaphol P, Pavasant P.

J Biomed Mater Res A. 2016 Jan;104(1):264-71. doi: 10.1002/jbm.a.35558. Epub 2015 Sep 29.

PMID:
26362586
4.

Silk sericin loaded alginate nanoparticles: Preparation and anti-inflammatory efficacy.

Khampieng T, Aramwit P, Supaphol P.

Int J Biol Macromol. 2015 Sep;80:636-43. doi: 10.1016/j.ijbiomac.2015.07.018. Epub 2015 Jul 16.

PMID:
26188300
5.

Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.

Thadavirul N, Pavasant P, Supaphol P.

J Biomater Sci Polym Ed. 2014;25(17):1986-2008. doi: 10.1080/09205063.2014.966800. Epub 2014 Oct 7.

PMID:
25291106
6.

Development and characterization of a novel, antimicrobial, sterile hydrogel dressing for burn wounds: single-step production with gamma irradiation creates silver nanoparticles and radical polymerization.

Boonkaew B, Barber PM, Rengpipat S, Supaphol P, Kempf M, He J, John VT, Cuttle L.

J Pharm Sci. 2014 Oct;103(10):3244-53. doi: 10.1002/jps.24095. Epub 2014 Jul 30.

PMID:
25079080
7.

Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings.

Klinkajon W, Supaphol P.

Biomed Mater. 2014 Aug;9(4):045008. doi: 10.1088/1748-6041/9/4/045008. Epub 2014 Jul 16.

PMID:
25029588
8.

Electrospun DOXY-h loaded-poly(acrylic acid) nanofiber mats: in vitro drug release and antibacterial properties investigation.

Khampieng T, Wnek GE, Supaphol P.

J Biomater Sci Polym Ed. 2014;25(12):1292-305. doi: 10.1080/09205063.2014.929431. Epub 2014 Jun 19.

PMID:
24945329
9.

Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: effects of coating on electrical conductivity and neural cell growth.

Sudwilai T, Ng JJ, Boonkrai C, Israsena N, Chuangchote S, Supaphol P.

J Biomater Sci Polym Ed. 2014;25(12):1240-52. doi: 10.1080/09205063.2014.926578. Epub 2014 Jun 16.

PMID:
24933469
10.

Preparation and characterization of silver nanoparticles-loaded calcium alginate beads embedded in gelatin scaffolds.

Pankongadisak P, Ruktanonchai UR, Supaphol P, Suwantong O.

AAPS PharmSciTech. 2014 Oct;15(5):1105-15. doi: 10.1208/s12249-014-0140-9. Epub 2014 May 23.

11.

Silver nanoparticle-embedded poly(vinyl pyrrolidone) hydrogel dressing: gamma-ray synthesis and biological evaluation.

Khampieng T, Brikshavana P, Supaphol P.

J Biomater Sci Polym Ed. 2014;25(8):826-42. doi: 10.1080/09205063.2014.910154. Epub 2014 Apr 23.

PMID:
24754348
12.

Characterization and cytological effects of a novel glycated gelatine substrate.

Boonkaew B, Tompkins K, Manokawinchoke J, Pavasant P, Supaphol P.

Biomed Mater. 2014 Apr;9(2):025001. doi: 10.1088/1748-6041/9/2/025001. Epub 2014 Jan 31.

PMID:
24486986
13.

Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering.

Thadavirul N, Pavasant P, Supaphol P.

J Biomed Mater Res A. 2014 Oct;102(10):3379-92. Epub 2013 Oct 28.

PMID:
24132871
14.

Antimicrobial efficacy of a novel silver hydrogel dressing compared to two common silver burn wound dressings: Acticoat™ and PolyMem Silver(®).

Boonkaew B, Kempf M, Kimble R, Supaphol P, Cuttle L.

Burns. 2014 Feb;40(1):89-96. doi: 10.1016/j.burns.2013.05.011. Epub 2013 Jun 21.

PMID:
23790588
15.

Electrospun nanofiber layers with incorporated photoluminescence indicator for chromatography and detection of ultraviolet-active compounds.

Kampalanonwat P, Supaphol P, Morlock GE.

J Chromatogr A. 2013 Jul 19;1299:110-7. doi: 10.1016/j.chroma.2013.05.011. Epub 2013 May 10.

PMID:
23764191
16.

Preparation and characterization of caffeic acid-grafted electrospun poly(L-lactic acid) fiber mats for biomedical applications.

Chuysinuan P, Pavasant P, Supaphol P.

ACS Appl Mater Interfaces. 2012 Jun 27;4(6):3031-40. doi: 10.1021/am300404v. Epub 2012 May 31.

PMID:
22577837
17.

Effect of the surface topography of electrospun poly(ε-caprolactone)/poly(3-hydroxybuterate-co-3-hydroxyvalerate) fibrous substrates on cultured bone cell behavior.

K-hasuwan PR, Pavasant P, Supaphol P.

Langmuir. 2011 Sep 6;27(17):10938-46. doi: 10.1021/la202255w. Epub 2011 Aug 9.

PMID:
21790199
18.

Biologically inspired hierarchical design of nanocomposites based on poly(ethylene oxide) and cellulose nanofibers.

Changsarn S, Mendez JD, Shanmuganathan K, Foster EJ, Weder C, Supaphol P.

Macromol Rapid Commun. 2011 Sep 1;32(17):1367-72. doi: 10.1002/marc.201100183. Epub 2011 Jun 17.

PMID:
21681994
19.

Tuning hydrophobicity and water adhesion by electrospinning and silanization.

Pisuchpen T, Chaim-ngoen N, Intasanta N, Supaphol P, Hoven VP.

Langmuir. 2011 Apr 5;27(7):3654-61. doi: 10.1021/la104978e. Epub 2011 Mar 14.

PMID:
21401064
20.

Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal.

Kampalanonwat P, Supaphol P.

ACS Appl Mater Interfaces. 2010 Dec;2(12):3619-27. doi: 10.1021/am1008024. Epub 2010 Nov 30.

PMID:
21117629

Supplemental Content

Loading ...
Support Center