Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 1040

1.

One Century of Forest Monitoring Data in Switzerland Reveals Species- and Site-Specific Trends of Climate-Induced Tree Mortality.

Etzold S, Ziemińska K, Rohner B, Bottero A, Bose AK, Ruehr NK, Zingg A, Rigling A.

Front Plant Sci. 2019 Mar 22;10:307. doi: 10.3389/fpls.2019.00307. eCollection 2019.

2.

Uptake of Soil-Derived Carbon into Plants: Implications for Disposal of Nuclear Waste.

Majlesi S, Juutilainen J, Kasurinen A, Mpamah P, Trubnikova T, Oinonen M, Martikainen P, Biasi C.

Environ Sci Technol. 2019 Apr 16;53(8):4198-4205. doi: 10.1021/acs.est.8b06089. Epub 2019 Apr 4.

PMID:
30916547
3.

Cellular level chemical changes in Scots pine heartwood during incipient brown rot decay.

Belt T, Altgen M, Mäkelä M, Hänninen T, Rautkari L.

Sci Rep. 2019 Mar 26;9(1):5188. doi: 10.1038/s41598-019-41735-8.

4.

Post - Mining soil as carbon storehouse under polish conditions.

Placek-Lapaj A, Grobelak A, Fijalkowski K, Singh BR, Almås ÅR, Kacprzak M.

J Environ Manage. 2019 May 15;238:307-314. doi: 10.1016/j.jenvman.2019.03.005. Epub 2019 Mar 7.

PMID:
30852407
5.

The effects of structurally different siderophores on the organelles of Pinus sylvestris root cells.

Mucha J, Gabała E, Zadworny M.

Planta. 2019 Feb 28. doi: 10.1007/s00425-019-03117-2. [Epub ahead of print] Erratum in: Planta. 2019 Apr 17;:.

PMID:
30820648
6.

Paleoecological and historical data as an important tool in ecosystem management.

Słowiński M, Lamentowicz M, Łuców D, Barabach J, Brykała D, Tyszkowski S, Pieńczewska A, Śnieszko Z, Dietze E, Jażdżewski K, Obremska M, Ott F, Brauer A, Marcisz K.

J Environ Manage. 2019 Apr 15;236:755-768. doi: 10.1016/j.jenvman.2019.02.002. Epub 2019 Feb 15.

PMID:
30776550
7.

Long-term responses of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) to the contamination of light soils with diesel oil.

Bęś A, Warmiński K, Adomas B.

Environ Sci Pollut Res Int. 2019 Apr;26(11):10587-10608. doi: 10.1007/s11356-019-04328-6. Epub 2019 Feb 14.

PMID:
30762180
8.

Atmospheric depositions affect the growth patterns of Scots pines (Pinus sylvestris L.)-a long-term cause-effect monitoring study using biomarkers.

Schulz H, Beck W, Lausch A.

Environ Monit Assess. 2019 Feb 14;191(3):159. doi: 10.1007/s10661-019-7272-z.

PMID:
30762135
9.

Waterlogging and soil freezing during dormancy affected root and shoot phenology and growth of Scots pine saplings.

Roitto M, Sutinen S, Wang AF, Domisch T, Lehto T, Repo T.

Tree Physiol. 2019 Feb 7. doi: 10.1093/treephys/tpz003. [Epub ahead of print]

PMID:
30753688
10.

Does climate-related in situ variability of Scots pine (Pinus sylvestris L.) needles have a genetic basis? Evidence from common garden experiments.

Jankowski A, Wyka TP, Zytkowiak R, Danusevicius D, Oleksyn J.

Tree Physiol. 2019 Feb 4. doi: 10.1093/treephys/tpy145. [Epub ahead of print]

PMID:
30715504
11.

Seed germination and seedling growth of Scots pine in technogenically polluted soils as container media.

Makhniova S, Mohnachev P, Ayan S.

Environ Monit Assess. 2019 Jan 28;191(2):113. doi: 10.1007/s10661-019-7249-y.

PMID:
30693379
12.

Influences of light and humidity on carbonyl sulfide-based estimates of photosynthesis.

Kooijmans LMJ, Sun W, Aalto J, Erkkilä KM, Maseyk K, Seibt U, Vesala T, Mammarella I, Chen H.

Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2470-2475. doi: 10.1073/pnas.1807600116. Epub 2019 Jan 25.

13.

Microwave-assisted Organosolv pretreatment of a sawmill mixed feedstock for bioethanol production in a wood biorefinery.

Alio MA, Tugui OC, Vial C, Pons A.

Bioresour Technol. 2019 Mar;276:170-176. doi: 10.1016/j.biortech.2018.12.078. Epub 2018 Dec 24.

PMID:
30623872
14.

We Are What We Eat: A Stoichiometric and Ecometabolomic Study of Caterpillars Feeding on Two Pine Subspecies of Pinus sylvestris.

Rivas-Ubach A, Peñuelas J, Hódar JA, Oravec M, Paša-Tolić L, Urban O, Sardans J.

Int J Mol Sci. 2018 Dec 24;20(1). pii: E59. doi: 10.3390/ijms20010059.

15.

Geographical adaptation prevails over species-specific determinism in trees' vulnerability to climate change at Mediterranean rear-edge forests.

Dorado-Liñán I, Piovesan G, Martínez-Sancho E, Gea-Izquierdo G, Zang C, Cañellas I, Castagneri D, Di Filippo A, Gutiérrez E, Ewald J, Fernández-de-Uña L, Hornstein D, Jantsch MC, Levanič T, Mellert KH, Vacchiano G, Zlatanov T, Menzel A.

Glob Chang Biol. 2018 Dec 13. doi: 10.1111/gcb.14544. [Epub ahead of print]

PMID:
30548989
16.

Restoration of Vegetation in Relation to Soil Properties of Spoil Heap Heavily Contaminated with Heavy Metals.

Pająk M, Błońska E, Szostak M, Gąsiorek M, Pietrzykowski M, Urban O, Derbis P.

Water Air Soil Pollut. 2018;229(12):392. doi: 10.1007/s11270-018-4040-6. Epub 2018 Nov 24.

17.

Influence of stand density and canopy structure on the germination and growth of Scots pine (Pinus sylvestris L.) seedlings.

Kara F, Topaçoğlu O.

Environ Monit Assess. 2018 Nov 30;190(12):749. doi: 10.1007/s10661-018-7129-x.

PMID:
30498861
18.

Importance of Ecological Variables in Explaining Population Dynamics of Three Important Pine Pest Insects.

Hentschel R, Möller K, Wenning A, Degenhardt A, Schröder J.

Front Plant Sci. 2018 Nov 13;9:1667. doi: 10.3389/fpls.2018.01667. eCollection 2018.

19.

Climate Regimes Override Micro-Site Effects on the Summer Temperature Signal of Scots Pine at Its Northern Distribution Limits.

Lange J, Buras A, Cruz-García R, Gurskaya M, Jalkanen R, Kukarskih V, Seo JW, Wilmking M.

Front Plant Sci. 2018 Nov 8;9:1597. doi: 10.3389/fpls.2018.01597. eCollection 2018.

20.

Analysis of phenotypic- and Estimated Breeding Values (EBV) to dissect the genetic architecture of complex traits in a Scots pine three-generation pedigree design.

Calleja-Rodriguez A, Li Z, Hallingbäck HR, Sillanpää MJ, Wu HX, Abrahamsson S, García-Gil MR.

J Theor Biol. 2019 Feb 7;462:283-292. doi: 10.1016/j.jtbi.2018.11.007. Epub 2018 Nov 10.

Supplemental Content

Loading ...
Support Center