Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 157

1.

Photosynthetic capacity, leaf respiration and growth in two papaya (Carica papaya) genotypes with different leaf chlorophyll concentrations.

Paixão JS, Da Silva JR, Ruas KF, Rodrigues WP, Filho JAM, Bernado WP, Abreu DP, Ferreira LS, Gonzalez JC, Griffin KL, Ramalho JC, Campostrini E.

AoB Plants. 2019 Mar 8;11(2):plz013. doi: 10.1093/aobpla/plz013. eCollection 2019 Apr.

2.

The Role of Low Soil Temperature for Photosynthesis and Stomatal Conductance of Three Graminoids From Different Elevations.

Göbel L, Coners H, Hertel D, Willinghöfer S, Leuschner C.

Front Plant Sci. 2019 Mar 18;10:330. doi: 10.3389/fpls.2019.00330. eCollection 2019.

3.

Metabolic responses to potassium availability and waterlogging reshape respiration and carbon use efficiency in oil palm.

Cui J, Davanture M, Zivy M, Lamade E, Tcherkez G.

New Phytol. 2019 Feb 15. doi: 10.1111/nph.15751. [Epub ahead of print]

PMID:
30767245
4.

Widespread inhibition of daytime ecosystem respiration.

Keenan TF, Migliavacca M, Papale D, Baldocchi D, Reichstein M, Torn M, Wutzler T.

Nat Ecol Evol. 2019 Mar;3(3):407-415. doi: 10.1038/s41559-019-0809-2. Epub 2019 Feb 11.

PMID:
30742107
5.

Influence of leaf age, species and soil depth on the authenticity and geographical origin assignment of green tea.

Liu Z, Zhang Y, Zhang Y, Yang G, Shao S, Nie J, Yuan Y, Rogers KM.

Rapid Commun Mass Spectrom. 2019 Apr 15;33(7):625-634. doi: 10.1002/rcm.8387.

PMID:
30667552
6.

Impact of Multiple Ecological Stressors on a Sub-Arctic Ecosystem: No Interaction Between Extreme Winter Warming Events, Nitrogen Addition and Grazing.

Bokhorst S, Berg MP, Edvinsen GK, Ellers J, Heitman A, Jaakola L, Mæhre HK, Phoenix GK, Tømmervik H, Bjerke JW.

Front Plant Sci. 2018 Nov 30;9:1787. doi: 10.3389/fpls.2018.01787. eCollection 2018.

7.

Arctic browning: Impacts of extreme climatic events on heathland ecosystem CO2 fluxes.

Treharne R, Bjerke JW, Tømmervik H, Stendardi L, Phoenix GK.

Glob Chang Biol. 2019 Feb;25(2):489-503. doi: 10.1111/gcb.14500. Epub 2018 Nov 25.

8.

Contrasting thermal acclimation of leaf dark respiration and photosynthesis of Antarctic vascular plant species exposed to nocturnal warming.

Sanhueza C, Fuentes F, Cortés D, Bascunan-Godoy L, Sáez PL, Bravo LA, Cavieres LA.

Physiol Plant. 2018 Nov 22. doi: 10.1111/ppl.12881. [Epub ahead of print]

PMID:
30467866
9.

Environmental controls on light inhibition of respiration and leaf and canopy daytime carbon exchange in a temperate deciduous forest.

Heskel MA, Tang J.

Tree Physiol. 2018 Dec 1;38(12):1886-1902. doi: 10.1093/treephys/tpy103.

PMID:
30252110
10.

Mitochondrial complex I dysfunction increases CO2 efflux and reconfigures metabolic fluxes of day respiration in tobacco leaves.

Lothier J, De Paepe R, Tcherkez G.

New Phytol. 2019 Jan;221(2):750-763. doi: 10.1111/nph.15393. Epub 2018 Aug 22.

PMID:
30133747
11.

Adaptive physiological response, carbon partitioning, and biomass production of Withania somnifera (L.) Dunal grown under elevated CO2 regimes.

Sharma R, Singh H, Kaushik M, Nautiyal R, Singh O.

3 Biotech. 2018 Jun;8(6):267. doi: 10.1007/s13205-018-1292-1. Epub 2018 May 25.

PMID:
29868305
12.

Photosynthetic capacity and leaf nitrogen decline along a controlled climate gradient in provenances of two widely distributed Eucalyptus species.

Crous KY, Drake JE, Aspinwall MJ, Sharwood RE, Tjoelker MG, Ghannoum O.

Glob Chang Biol. 2018 Oct;24(10):4626-4644. doi: 10.1111/gcb.14330. Epub 2018 Jun 19.

PMID:
29804312
13.

Determination of leaf respiration in the light: comparison between an isotopic disequilibrium method and the Laisk method.

Gong XY, Tcherkez G, Wenig J, Schäufele R, Schnyder H.

New Phytol. 2018 Jun;218(4):1371-1382. doi: 10.1111/nph.15126. Epub 2018 Apr 3.

PMID:
29611899
14.

Three physiological parameters capture variation in leaf respiration of Eucalyptus grandis, as elicited by short-term changes in ambient temperature, and differing nitrogen supply.

Kruse J, Rennenberg H, Adams MA.

Plant Cell Environ. 2018 Jun;41(6):1369-1382. doi: 10.1111/pce.13162. Epub 2018 Apr 26.

PMID:
29424929
15.

Effects of Elevated Atmospheric CO2 on Respiratory Rates in Mature Leaves of Two Rice Cultivars Grown at a Free-Air CO2 Enrichment Site and Analyses of the Underlying Mechanisms.

Noguchi K, Tsunoda T, Miyagi A, Kawai-Yamada M, Sugiura D, Miyazawa SI, Tokida T, Usui Y, Nakamura H, Sakai H, Hasegawa T.

Plant Cell Physiol. 2018 Mar 1;59(3):637-649. doi: 10.1093/pcp/pcy017.

PMID:
29401364
16.

Macromolecular rate theory (MMRT) provides a thermodynamics rationale to underpin the convergent temperature response in plant leaf respiration.

Liang LL, Arcus VL, Heskel MA, O'Sullivan OS, Weerasinghe LK, Creek D, Egerton JJG, Tjoelker MG, Atkin OK, Schipper LA.

Glob Chang Biol. 2018 Apr;24(4):1538-1547. doi: 10.1111/gcb.13936. Epub 2017 Nov 14.

PMID:
29030907
17.

Variation in Leaf Respiration Rates at Night Correlates with Carbohydrate and Amino Acid Supply.

O'Leary BM, Lee CP, Atkin OK, Cheng R, Brown TB, Millar AH.

Plant Physiol. 2017 Aug;174(4):2261-2273. doi: 10.1104/pp.17.00610. Epub 2017 Jun 14.

18.

Inside out: efflux of carbon dioxide from leaves represents more than leaf metabolism.

Stutz SS, Anderson J, Zulick R, Hanson DT.

J Exp Bot. 2017 May 17;68(11):2849-2857. doi: 10.1093/jxb/erx155.

19.

Acclimation of light and dark respiration to experimental and seasonal warming are mediated by changes in leaf nitrogen in Eucalyptus globulus.

Crous KY, Wallin G, Atkin OK, Uddling J, Af Ekenstam A.

Tree Physiol. 2017 Aug 1;37(8):1069-1083. doi: 10.1093/treephys/tpx052.

PMID:
28541536
20.

Vertical and seasonal variations in temperature responses of leaf respiration in a Chamaecyparis obtusa canopy.

Araki MG, Gyokusen K, Kajimoto T.

Tree Physiol. 2017 Oct 1;37(10):1269-1284. doi: 10.1093/treephys/tpx012.

PMID:
28338803

Supplemental Content

Loading ...
Support Center