Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 24

1.

Antarctic blackfin icefish genome reveals adaptations to extreme environments.

Kim BM, Amores A, Kang S, Ahn DH, Kim JH, Kim IC, Lee JH, Lee SG, Lee H, Lee J, Kim HW, Desvignes T, Batzel P, Sydes J, Titus T, Wilson CA, Catchen JM, Warren WC, Schartl M, Detrich HW 3rd, Postlethwait JH, Park H.

Nat Ecol Evol. 2019 Mar;3(3):469-478. doi: 10.1038/s41559-019-0812-7. Epub 2019 Feb 25.

PMID:
30804520
2.

Thin polyester filters as versatile sample substrates for high-pressure freezing of bacterial biofilms, suspended microorganisms and adherent eukaryotic cells.

Schaudinn C, Tautz C, Laue M.

J Microsc. 2019 May;274(2):92-101. doi: 10.1111/jmi.12788. Epub 2019 Mar 12.

PMID:
30802953
3.

Synthetic Polyampholytes as Macromolecular Cryoprotective Agents.

Zhao J, Johnson MA, Fisher R, Burke NAD, Stöver HDH.

Langmuir. 2019 Feb 5;35(5):1807-1817. doi: 10.1021/acs.langmuir.8b01602. Epub 2018 Oct 3.

PMID:
30134094
4.

Thermal Analyses of a Human Kidney and a Rabbit Kidney During Cryopreservation by Vitrification.

Ehrlich LE, Fahy GM, Wowk BG, Malen JA, Rabin Y.

J Biomech Eng. 2018 Jan 1;140(1). doi: 10.1115/1.4037406.

5.

Putting life on ice: bacteria that bind to frozen water.

Bar Dolev M, Bernheim R, Guo S, Davies PL, Braslavsky I.

J R Soc Interface. 2016 Aug;13(121). pii: 20160210. doi: 10.1098/rsif.2016.0210.

6.

Investigations concerning cavitation and frost fatigue in clonal 84K poplar using high-resolution cavitron measurements.

Feng F, Ding F, Tyree MT.

Plant Physiol. 2015 May;168(1):144-55. doi: 10.1104/pp.114.256271. Epub 2015 Mar 18.

7.

Antifreeze glycoprotein agents: structural requirements for activity.

Carvajal-Rondanelli PA, Marshall SH, Guzman F.

J Sci Food Agric. 2011 Nov;91(14):2507-10. doi: 10.1002/jsfa.4473. Epub 2011 Jul 1. Review.

PMID:
21725975
8.

NMR characterizations of the ice binding surface of an antifreeze protein.

Hong J, Hu Y, Li C, Jia Z, Xia B, Jin C.

PLoS One. 2010 Dec 28;5(12):e15682. doi: 10.1371/journal.pone.0015682.

9.

Morphological analyses of ice-free and frozen cryopreserved heart valve explants.

Brockbank KG, Song YC.

J Heart Valve Dis. 2004 Mar;13(2):297-301.

PMID:
15086270
10.

Recovery of a northern New England salt marsh plant community from winter icing.

Ewanchuk PJ, Bertness MD.

Oecologia. 2003 Aug;136(4):616-26. Epub 2003 Jun 7.

PMID:
12802675
11.

Mechanisms of bioprosthetic heart valve calcification.

Brockbank KG, Song YC.

Transplantation. 2003 Apr 27;75(8):1133-5.

PMID:
12717191
12.

In vivo evaluation of the effects of a new ice-free cryopreservation process on autologous vascular grafts.

Song YC, Hagen PO, Lightfoot FG, Taylor MJ, Smith AC, Brockbank KG.

J Invest Surg. 2000 Sep-Oct;13(5):279-88.

PMID:
11071564
14.

Ultrastructure of human scalp hair shafts as revealed by freeze-substitution fixation.

Takizawa T, Takizawa T, Arai S, Osumi M, Saito T.

Anat Rec. 1998 Jul;251(3):406-13.

15.

An ultrastructural, time-resolved study of freezing in the corneal stroma.

Fullwood NJ, Meek KM.

J Mol Biol. 1994 Feb 25;236(3):749-58.

PMID:
8114092
16.

Vitrification of mouse oocytes using short cryoprotectant exposure: effects of varying exposure times on survival.

Shaw PW, Bernard AG, Fuller BJ, Hunter JH, Shaw RW.

Mol Reprod Dev. 1992 Oct;33(2):210-4.

PMID:
1418991
17.

Corneal tolerance of vitrifiable concentrations of propane-1,2-diol.

Rich SJ, Armitage WJ.

Cryobiology. 1991 Apr;28(2):159-70. Erratum in: Cryobiology 1991 Oct;28(5):509-10.

PMID:
2070618
18.

Ice Damage at SLAC.

[No authors listed]

Science. 1991 Jan 11;251(4990):158. No abstract available.

PMID:
17836930

Supplemental Content

Loading ...
Support Center