Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 222

1.

Ion-mediated increases in xylem hydraulic conductivity: seasonal differences between coexisting ring- and diffuse-porous temperate tree species.

Jupa R, Doubková P, Gloser V.

Tree Physiol. 2019 Apr 2. pii: tpz035. doi: 10.1093/treephys/tpz035. [Epub ahead of print]

PMID:
30938424
2.

Anti-inflammatory effects of Phytodolor® (STW 1) and components (poplar, ash and goldenrod) on human monocytes/macrophages.

Bonaterra GA, Schwarzbach H, Kelber O, Weiser D, Kinscherf R.

Phytomedicine. 2019 Feb 18;58:152868. doi: 10.1016/j.phymed.2019.152868. [Epub ahead of print]

3.

Crossing borders - European forest reproductive material moving in trade.

Jansen S, Konrad H, Geburek T.

J Environ Manage. 2019 Mar 1;233:308-320. doi: 10.1016/j.jenvman.2018.11.079. Epub 2018 Dec 21.

PMID:
30583105
4.

Endocytosis acts as transport pathway in wood.

Słupianek A, Kasprowicz-Maluśki A, Myśkow E, Turzańska M, Sokołowska K.

New Phytol. 2018 Dec 12. doi: 10.1111/nph.15637. [Epub ahead of print]

PMID:
30548617
5.

Leaf litter species identity influences biochemical composition of ectomycorrhizal fungi.

Yang N, Butenschoen O, Rana R, Köhler L, Hertel D, Leuschner C, Scheu S, Polle A, Pena R.

Mycorrhiza. 2019 Mar;29(2):85-96. doi: 10.1007/s00572-018-0876-2. Epub 2018 Dec 13.

PMID:
30547252
6.

Advanced spectroscopy-based phenotyping offers a potential solution to the ash dieback epidemic.

Villari C, Dowkiw A, Enderle R, Ghasemkhani M, Kirisits T, Kjær ED, Marčiulynienė D, McKinney LV, Metzler B, Muñoz F, Nielsen LR, Pliūra A, Stener LG, Suchockas V, Rodriguez-Saona L, Bonello P, Cleary M.

Sci Rep. 2018 Nov 28;8(1):17448. doi: 10.1038/s41598-018-35770-0.

7.

The Endophytic Mycobiome of European Ash and Sycamore Maple Leaves - Geographic Patterns, Host Specificity and Influence of Ash Dieback.

Schlegel M, Queloz V, Sieber TN.

Front Microbiol. 2018 Oct 24;9:2345. doi: 10.3389/fmicb.2018.02345. eCollection 2018.

8.

Environmental drivers interactively affect individual tree growth across temperate European forests.

Maes SL, Perring MP, Vanhellemont M, Depauw L, Van den Bulcke J, Brūmelis G, Brunet J, Decocq G, den Ouden J, Härdtle W, Hédl R, Heinken T, Heinrichs S, Jaroszewicz B, Kopecký M, Máliš F, Wulf M, Verheyen K.

Glob Chang Biol. 2019 Jan;25(1):201-217. doi: 10.1111/gcb.14493. Epub 2018 Nov 22.

PMID:
30346104
9.

Species-specific differences in water uptake depth of mature temperate trees vary with water availability in the soil.

Brinkmann N, Eugster W, Buchmann N, Kahmen A.

Plant Biol (Stuttg). 2019 Jan;21(1):71-81. doi: 10.1111/plb.12907. Epub 2018 Oct 15.

PMID:
30184305
10.

Genome-wide epigenetic variation among ash trees differing in susceptibility to a fungal disease.

Sollars ESA, Buggs RJA.

BMC Genomics. 2018 Jun 28;19(1):502. doi: 10.1186/s12864-018-4874-8.

11.

Morphological imaging and quantification of axial xylem tissue in Fraxinus excelsior L. through X-ray micro-computed tomography.

Koddenberg T, Militz H.

Micron. 2018 Aug;111:28-35. doi: 10.1016/j.micron.2018.05.004. Epub 2018 May 5.

PMID:
29857175
12.

The ash dieback invasion of Europe was founded by two genetically divergent individuals.

McMullan M, Rafiqi M, Kaithakottil G, Clavijo BJ, Bilham L, Orton E, Percival-Alwyn L, Ward BJ, Edwards A, Saunders DGO, Garcia Accinelli G, Wright J, Verweij W, Koutsovoulos G, Yoshida K, Hosoya T, Williamson L, Jennings P, Ioos R, Husson C, Hietala AM, Vivian-Smith A, Solheim H, MaClean D, Fosker C, Hall N, Brown JKM, Swarbreck D, Blaxter M, Downie JA, Clark MD.

Nat Ecol Evol. 2018 Jun;2(6):1000-1008. doi: 10.1038/s41559-018-0548-9. Epub 2018 Apr 23.

13.

Population structure of the ash dieback pathogen, Hymenoscyphus fraxineus, in relation to its mode of arrival in the UK.

Orton ES, Brasier CM, Bilham LJ, Bansal A, Webber JF, Brown JKM.

Plant Pathol. 2018 Feb;67(2):255-264. doi: 10.1111/ppa.12762. Epub 2017 Sep 26.

14.

Polygamy or subdioecy? The impact of diallelic self-incompatibility on the sexual system in Fraxinus excelsior (Oleaceae).

Saumitou-Laprade P, Vernet P, Dowkiw A, Bertrand S, Billiard S, Albert B, Gouyon PH, Dufay M.

Proc Biol Sci. 2018 Feb 28;285(1873). pii: 20180004. doi: 10.1098/rspb.2018.0004.

15.

Fungal communities associated with species of Fraxinus tolerant to ash dieback, and their potential for biological control.

Kosawang C, Amby DB, Bussaban B, McKinney LV, Xu J, Kjær ED, Collinge DB, Nielsen LR.

Fungal Biol. 2018 Feb - Mar;122(2-3):110-120. doi: 10.1016/j.funbio.2017.11.002. Epub 2017 Nov 20.

PMID:
29458714
16.

Ash leaf metabolomes reveal differences between trees tolerant and susceptible to ash dieback disease.

Sambles CM, Salmon DL, Florance H, Howard TP, Smirnoff N, Nielsen LR, McKinney LV, Kjær ED, Buggs RJA, Studholme DJ, Grant M.

Sci Data. 2017 Dec 19;4:170190. doi: 10.1038/sdata.2017.190.

17.

Root-derived carbon and nitrogen from beech and ash trees differentially fuel soil animal food webs of deciduous forests.

Zieger SL, Ammerschubert S, Polle A, Scheu S.

PLoS One. 2017 Dec 13;12(12):e0189502. doi: 10.1371/journal.pone.0189502. eCollection 2017.

18.
19.

Gene flow of common ash (Fraxinus excelsior L.) in a fragmented landscape.

Semizer-Cuming D, Kjær ED, Finkeldey R.

PLoS One. 2017 Oct 20;12(10):e0186757. doi: 10.1371/journal.pone.0186757. eCollection 2017.

20.

How much does climate change threaten European forest tree species distributions?

Dyderski MK, Paź S, Frelich LE, Jagodziński AM.

Glob Chang Biol. 2018 Mar;24(3):1150-1163. doi: 10.1111/gcb.13925. Epub 2017 Oct 30.

PMID:
28991410

Supplemental Content

Loading ...
Support Center