Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 189

1.

Data of plant species in permanent plots in a restored coppice-with-standards forest in Northwestern Germany from 1994 to 2013.

Strubelt I, Diekmann M, Griese D, Zacharias D.

Data Brief. 2018 Nov 13;24:103461. doi: 10.1016/j.dib.2018.11.046. eCollection 2019 Jun.

2.

Spatial and life cycle assessment of bioenergy-driven land-use changes in Ireland.

Clarke R, Sosa A, Murphy F.

Sci Total Environ. 2019 May 10;664:262-275. doi: 10.1016/j.scitotenv.2019.01.397. Epub 2019 Feb 4.

PMID:
30743120
3.

Tobacco, Sunflower and High Biomass SRC Clones Show Potential for Trace Metal Phytoextraction on a Moderately Contaminated Field Site in Belgium.

Thijs S, Witters N, Janssen J, Ruttens A, Weyens N, Herzig R, Mench M, Van Slycken S, Meers E, Meiresonne L, Vangronsveld J.

Front Plant Sci. 2018 Dec 21;9:1879. doi: 10.3389/fpls.2018.01879. eCollection 2018.

4.

Genotypic variation in transpiration of coppiced poplar during the third rotation of a short-rotation bio-energy culture.

Navarro A, Portillo-Estrada M, Arriga N, Vanbeveren SPP, Ceulemans R.

Glob Change Biol Bioenergy. 2018 Aug;10(8):592-607. doi: 10.1111/gcbb.12526. Epub 2018 Jun 4.

5.

Mixture of Salix Genotypes Promotes Root Colonization With Dark Septate Endophytes and Changes P Cycling in the Mycorrhizosphere.

Baum C, Hrynkiewicz K, Szymańska S, Vitow N, Hoeber S, Fransson PMA, Weih M.

Front Microbiol. 2018 May 18;9:1012. doi: 10.3389/fmicb.2018.01012. eCollection 2018.

6.

Estimating the effect of abandoning coppice management on carbon sequestration by oak forests in Turkey with a modeling approach.

Lee J, Makineci E, Tolunay D, Son Y.

Sci Total Environ. 2018 Nov 1;640-641:400-405. doi: 10.1016/j.scitotenv.2018.05.341. Epub 2018 Jun 1.

PMID:
29864656
7.

Dry matter losses and quality changes during short rotation coppice willow storage in chip or rod form.

Whittaker C, Yates NE, Powers SJ, Misselbrook T, Shield I.

Biomass Bioenergy. 2018 May;112:29-36. doi: 10.1016/j.biombioe.2018.02.005.

8.

Initial changes in soil properties and carbon sequestration potential under monocultures and short-rotation alley coppices with poplar and willow after three years of plantation.

Tariq A, Gunina A, Lamersdorf N.

Sci Total Environ. 2018 Sep 1;634:963-973. doi: 10.1016/j.scitotenv.2018.03.391. Epub 2018 Apr 11.

PMID:
29660890
9.

Bridging the gap between feedstock growers and users: the study of a coppice poplar-based biorefinery.

Dou C, Gustafson R, Bura R.

Biotechnol Biofuels. 2018 Mar 22;11:77. doi: 10.1186/s13068-018-1079-y. eCollection 2018.

10.

Effects of environmental parameters on the chestnut gall wasp and its complex of indigenous parasitoids.

Bonsignore CP, Bernardo U.

Naturwissenschaften. 2018 Mar 2;105(3-4):20. doi: 10.1007/s00114-018-1545-1.

PMID:
29500544
11.

Effect of planting density and harvest protocol on field-scale phytoremediation efficiency by Eucalyptus globulus.

Luo J, He M, Qi S, Wu J, Gu XS.

Environ Sci Pollut Res Int. 2018 Apr;25(12):11343-11350. doi: 10.1007/s11356-018-1427-2. Epub 2018 Feb 7.

PMID:
29417481
12.

Extreme rainfall affects assembly of the root-associated fungal community.

Barnes CJ, van der Gast CJ, McNamara NP, Rowe R, Bending GD.

New Phytol. 2018 Dec;220(4):1172-1184. doi: 10.1111/nph.14990. Epub 2018 Jan 19.

13.

Effects of dark brooders and overhangs on free-range use and behaviour of slow-growing broilers.

Stadig LM, Rodenburg TB, Reubens B, Ampe B, Tuyttens FAM.

Animal. 2018 Aug;12(8):1621-1630. doi: 10.1017/S1751731117003184. Epub 2017 Dec 4.

PMID:
29198248
14.

Increasing air humidity influences hydraulic efficiency but not functional vulnerability of xylem in hybrid aspen.

Sellin A, Alber M, Kupper P.

J Plant Physiol. 2017 Dec;219:28-36. doi: 10.1016/j.jplph.2017.09.006. Epub 2017 Sep 28.

PMID:
28985513
16.

Can the agricultural AquaCrop model simulate water use and yield of a poplar short-rotation coppice?

Horemans JA, Van Gaelen H, Raes D, Zenone T, Ceulemans R.

Glob Change Biol Bioenergy. 2017 Jun;9(6):1151-1164. doi: 10.1111/gcbb.12422. Epub 2017 Feb 16.

17.

Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice.

Dou C, Marcondes WF, Djaja JE, Bura R, Gustafson R.

Biotechnol Biofuels. 2017 Jun 5;10:144. doi: 10.1186/s13068-017-0829-6. eCollection 2017.

18.

Impact of RAV1-engineering on poplar biomass production: a short-rotation coppice field trial.

Moreno-Cortés A, Ramos-Sánchez JM, Hernández-Verdeja T, González-Melendi P, Alves A, Simões R, Rodrigues JC, Guijarro M, Canellas I, Sixto H, Allona I.

Biotechnol Biofuels. 2017 May 2;10:110. doi: 10.1186/s13068-017-0795-z. eCollection 2017.

19.

Genetics of phenotypic plasticity and biomass traits in hybrid willows across contrasting environments and years.

Berlin S, Hallingbäck HR, Beyer F, Nordh NE, Weih M, Rönnberg-Wästljung AC.

Ann Bot. 2017 Jul 1;120(1):87-100. doi: 10.1093/aob/mcx029.

20.

Soil carbon and belowground carbon balance of a short-rotation coppice: assessments from three different approaches.

Berhongaray G, Verlinden MS, Broeckx LS, Janssens IA, Ceulemans R.

Glob Change Biol Bioenergy. 2017 Feb;9(2):299-313. doi: 10.1111/gcbb.12369. Epub 2016 Jun 14.

Supplemental Content

Loading ...
Support Center