Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 76

1.

Leaf structural and hydraulic adjustment with respect to air humidity and canopy position in silver birch (Betula pendula).

Sellin A, Taneda H, Alber M.

J Plant Res. 2019 Apr 15. doi: 10.1007/s10265-019-01106-w. [Epub ahead of print]

PMID:
30989500
2.

Canopy position is a stronger determinant of bacterial community composition and diversity than environmental disturbance in the phyllosphere.

Stone BWG, Jackson CR.

FEMS Microbiol Ecol. 2019 Apr 1;95(4). pii: fiz032. doi: 10.1093/femsec/fiz032.

PMID:
30860575
3.

Influence of fruit canopy position and maturity on yield determinants and chemical composition of virgin olive oil.

Grilo F, Caruso T, Wang SC.

J Sci Food Agric. 2019 Mar 8. doi: 10.1002/jsfa.9665. [Epub ahead of print]

PMID:
30847923
4.

Investigating the involvement of ABA, ABA catabolites and cytokinins in the susceptibility of 'Nules Clementine' mandarin to rind breakdown disorder.

Magwaza LS, Carmen Alamar M, Tesfay SZ, Mditshwa A, Opara UL, Terry LA.

J Sci Food Agric. 2019 Feb 14. doi: 10.1002/jsfa.9644. [Epub ahead of print]

PMID:
30767237
5.

Canopy attachment position influences metabolism and peel constituency of European pear fruit.

Serra S, Sullivan N, Mattheis JP, Musacchi S, Rudell DR.

BMC Plant Biol. 2018 Dec 18;18(1):364. doi: 10.1186/s12870-018-1544-6.

6.

Increased temperatures may safeguard the nutritional quality of crops under future elevated CO2 concentrations.

Köhler IH, Huber SC, Bernacchi CJ, Baxter IR.

Plant J. 2019 Mar;97(5):872-886. doi: 10.1111/tpj.14166. Epub 2019 Jan 18.

PMID:
30447177
7.

Intracanopy adjustment of leaf-level thermal tolerance is associated with microclimatic variation across the canopy of a desert tree (Acacia papyrocarpa).

Curtis EM, Knight CA, Leigh A.

Oecologia. 2019 Jan;189(1):37-46. doi: 10.1007/s00442-018-4289-x. Epub 2018 Oct 31.

PMID:
30382387
8.

Environmental controls on light inhibition of respiration and leaf and canopy daytime carbon exchange in a temperate deciduous forest.

Heskel MA, Tang J.

Tree Physiol. 2018 Dec 1;38(12):1886-1902. doi: 10.1093/treephys/tpy103.

PMID:
30252110
9.

Oxygen isotopes in tree rings are less sensitive to changes in tree size and relative canopy position than carbon isotopes.

Klesse S, Weigt R, Treydte K, Saurer M, Schmid L, Siegwolf RTW, Frank DC.

Plant Cell Environ. 2018 Dec;41(12):2899-2914. doi: 10.1111/pce.13424. Epub 2018 Sep 14.

PMID:
30107635
10.

Intraspecific variation in soy across the leaf economics spectrum.

Hayes FJ, Buchanan SW, Coleman B, Gordon AM, Reich PB, Thevathasan NV, Wright IJ, Martin AR.

Ann Bot. 2019 Jan 1;123(1):107-120. doi: 10.1093/aob/mcy147.

PMID:
30107396
11.

Differences in xylogenesis between dominant and suppressed trees.

Liu S, Li X, Rossi S, Wang L, Li W, Liang E, Leavitt SW.

Am J Bot. 2018 May;105(5):950-956. doi: 10.1002/ajb2.1089. Epub 2018 Jun 6.

PMID:
29874391
12.

Quantifying climate-growth relationships at the stand level in a mature mixed-species conifer forest.

Teets A, Fraver S, Weiskittel AR, Hollinger DY.

Glob Chang Biol. 2018 Aug;24(8):3587-3602. doi: 10.1111/gcb.14120. Epub 2018 Apr 10.

PMID:
29520931
13.

Distance-dependent seedling mortality and long-term spacing dynamics in a neotropical forest community.

Murphy SJ, Wiegand T, Comita LS.

Ecol Lett. 2017 Nov;20(11):1469-1478. doi: 10.1111/ele.12856. Epub 2017 Oct 4.

PMID:
28980377
14.

Long-term fertilization determines different metabolomic profiles and responses in saplings of three rainforest tree species with different adult canopy position.

Gargallo-Garriga A, Wright SJ, Sardans J, Pérez-Trujillo M, Oravec M, Večeřová K, Urban O, Fernández-Martínez M, Parella T, Peñuelas J.

PLoS One. 2017 May 11;12(5):e0177030. doi: 10.1371/journal.pone.0177030. eCollection 2017.

15.

Vertical and seasonal variations in temperature responses of leaf respiration in a Chamaecyparis obtusa canopy.

Araki MG, Gyokusen K, Kajimoto T.

Tree Physiol. 2017 Oct 1;37(10):1269-1284. doi: 10.1093/treephys/tpx012.

PMID:
28338803
16.

Irrigation and fruit canopy position modify oil quality of olive trees (cv. Frantoio).

Caruso G, Gucci R, Sifola MI, Selvaggini R, Urbani S, Esposto S, Taticchi A, Servili M.

J Sci Food Agric. 2017 Aug;97(11):3530-3539. doi: 10.1002/jsfa.8207. Epub 2017 Feb 15.

PMID:
28071794
17.

Linking photosynthesis and leaf N allocation under future elevated CO2 and climate warming in Eucalyptus globulus.

Sharwood RE, Crous KY, Whitney SM, Ellsworth DS, Ghannoum O.

J Exp Bot. 2017 Feb 1;68(5):1157-1167. doi: 10.1093/jxb/erw484.

18.

Shoot-level terpenoids emission in Norway spruce (Picea abies) under natural field and manipulated laboratory conditions.

Esposito R, Lusini I, Kristýna Večeřová, Petra Holišová, Pallozzi E, Guidolotti G, Urban O, Calfapietra C.

Plant Physiol Biochem. 2016 Nov;108:530-538. doi: 10.1016/j.plaphy.2016.08.019. Epub 2016 Aug 28.

PMID:
27599182
19.

Canopy position has a profound effect on soybean seed composition.

Huber SC, Li K, Nelson R, Ulanov A, DeMuro CM, Baxter I.

PeerJ. 2016 Sep 13;4:e2452. doi: 10.7717/peerj.2452. eCollection 2016.

20.

Effects of prolonged drought on the anatomy of sun and shade needles in young Norway spruce trees.

Gebauer R, Volařík D, Urban J, Børja I, Nagy NE, Eldhuset TD, Krokene P.

Ecol Evol. 2015 Oct 15;5(21):4989-98. doi: 10.1002/ece3.1766. eCollection 2015 Nov.

Supplemental Content

Loading ...
Support Center