Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 61

1.

'I'd like to report a suspicious looking tree': Public concern, public attention and the nature of reporting about ash dieback in the United Kingdom.

Fellenor J, Barnett J, Potter C, Urquhart J, Mumford JD, Quine CP, Raum S.

Public Underst Sci. 2019 Apr;28(3):339-356. doi: 10.1177/0963662518814369. Epub 2018 Dec 14.

2.

Advanced spectroscopy-based phenotyping offers a potential solution to the ash dieback epidemic.

Villari C, Dowkiw A, Enderle R, Ghasemkhani M, Kirisits T, Kjær ED, Marčiulynienė D, McKinney LV, Metzler B, Muñoz F, Nielsen LR, Pliūra A, Stener LG, Suchockas V, Rodriguez-Saona L, Bonello P, Cleary M.

Sci Rep. 2018 Nov 28;8(1):17448. doi: 10.1038/s41598-018-35770-0.

3.

Detection of a Conspecific Mycovirus in Two Closely Related Native and Introduced Fungal Hosts and Evidence for Interspecific Virus Transmission.

Schoebel CN, Prospero S, Gross A, Rigling D.

Viruses. 2018 Nov 13;10(11). pii: E628. doi: 10.3390/v10110628.

4.

The Endophytic Mycobiome of European Ash and Sycamore Maple Leaves - Geographic Patterns, Host Specificity and Influence of Ash Dieback.

Schlegel M, Queloz V, Sieber TN.

Front Microbiol. 2018 Oct 24;9:2345. doi: 10.3389/fmicb.2018.02345. eCollection 2018.

5.

Propagule Pressure Build-Up by the Invasive Hymenoscyphus fraxineus Following Its Introduction to an Ash Forest Inhabited by the Native Hymenoscyphus albidus.

Hietala AM, Børja I, Solheim H, Nagy NE, Timmermann V.

Front Plant Sci. 2018 Jul 30;9:1087. doi: 10.3389/fpls.2018.01087. eCollection 2018.

6.

Genome-wide epigenetic variation among ash trees differing in susceptibility to a fungal disease.

Sollars ESA, Buggs RJA.

BMC Genomics. 2018 Jun 28;19(1):502. doi: 10.1186/s12864-018-4874-8.

7.

The ash dieback invasion of Europe was founded by two genetically divergent individuals.

McMullan M, Rafiqi M, Kaithakottil G, Clavijo BJ, Bilham L, Orton E, Percival-Alwyn L, Ward BJ, Edwards A, Saunders DGO, Garcia Accinelli G, Wright J, Verweij W, Koutsovoulos G, Yoshida K, Hosoya T, Williamson L, Jennings P, Ioos R, Husson C, Hietala AM, Vivian-Smith A, Solheim H, MaClean D, Fosker C, Hall N, Brown JKM, Swarbreck D, Blaxter M, Downie JA, Clark MD.

Nat Ecol Evol. 2018 Jun;2(6):1000-1008. doi: 10.1038/s41559-018-0548-9. Epub 2018 Apr 23.

8.

Tracking the invasion: dispersal of Hymenoscyphus fraxineus airborne inoculum at different scales.

Grosdidier M, Ioos R, Husson C, Cael O, Scordia T, Marçais B.

FEMS Microbiol Ecol. 2018 May 1;94(5). doi: 10.1093/femsec/fiy049.

PMID:
29668932
9.

Hyfraxins A and B, cytotoxic ergostane-type steroid and lanostane triterpenoid glycosides from the invasive ash dieback ascomycete Hymenoscyphus fraxineus.

Surup F, Halecker S, Nimtz M, Rodrigo S, Schulz B, Steinert M, Stadler M.

Steroids. 2018 Jul;135:92-97. doi: 10.1016/j.steroids.2018.03.007. Epub 2018 Mar 23.

PMID:
29580870
10.

Invasive forest pathogens in Europe: Cross-country variation in public awareness but consistency in policy acceptability.

Eriksson L, Boberg J, Cech TL, Corcobado T, Desprez-Loustau ML, Hietala AM, Jung MH, Jung T, Lehtijarvi HTD, Oskay F, Slavov S, Solheim H, Stenlid J, Oliva J.

Ambio. 2019 Jan;48(1):1-12. doi: 10.1007/s13280-018-1046-7. Epub 2018 Mar 23.

11.

Population structure of the ash dieback pathogen, Hymenoscyphus fraxineus, in relation to its mode of arrival in the UK.

Orton ES, Brasier CM, Bilham LJ, Bansal A, Webber JF, Brown JKM.

Plant Pathol. 2018 Feb;67(2):255-264. doi: 10.1111/ppa.12762. Epub 2017 Sep 26.

12.

Fungal communities associated with species of Fraxinus tolerant to ash dieback, and their potential for biological control.

Kosawang C, Amby DB, Bussaban B, McKinney LV, Xu J, Kjær ED, Collinge DB, Nielsen LR.

Fungal Biol. 2018 Feb - Mar;122(2-3):110-120. doi: 10.1016/j.funbio.2017.11.002. Epub 2017 Nov 20.

PMID:
29458714
13.

Ash leaf metabolomes reveal differences between trees tolerant and susceptible to ash dieback disease.

Sambles CM, Salmon DL, Florance H, Howard TP, Smirnoff N, Nielsen LR, McKinney LV, Kjær ED, Buggs RJA, Studholme DJ, Grant M.

Sci Data. 2017 Dec 19;4:170190. doi: 10.1038/sdata.2017.190.

14.
15.

Expert risk perceptions and the social amplification of risk: A case study in invasive tree pests and diseases.

Urquhart J, Potter C, Barnett J, Fellenor J, Mumford J, Quine CP.

Environ Sci Policy. 2017 Nov;77:172-178. doi: 10.1016/j.envsci.2017.08.020.

16.

Gene flow of common ash (Fraxinus excelsior L.) in a fragmented landscape.

Semizer-Cuming D, Kjær ED, Finkeldey R.

PLoS One. 2017 Oct 20;12(10):e0186757. doi: 10.1371/journal.pone.0186757. eCollection 2017.

17.

Exploring public perceptions of solutions to tree diseases in the UK: Implications for policy-makers.

Jepson P, Arakelyan I.

Environ Sci Policy. 2017 Oct;76:70-77. doi: 10.1016/j.envsci.2017.06.008.

18.

Fraxitoxin, a New Isochromanone Isolated from Diplodia fraxini.

Cimmino A, Maddau L, Masi M, Linaldeddu BT, Pescitelli G, Evidente A.

Chem Biodivers. 2017 Nov;14(11). doi: 10.1002/cbdv.201700325. Epub 2017 Nov 21.

PMID:
28834595
19.

Ash dieback epidemic in Europe: How can molecular technologies help?

Downie JA.

PLoS Pathog. 2017 Jul 20;13(7):e1006381. doi: 10.1371/journal.ppat.1006381. eCollection 2017 Jul. Review. No abstract available.

20.

Supplemental Content

Loading ...
Support Center