Send to

Choose Destination
See comment in PubMed Commons below
IEEE Trans Biomed Eng. 2007 Mar;54(3):550-6.

Study of on-line adaptive discriminant analysis for EEG-based brain computer interfaces.

Author information

Department of Electrical and Electronic Engineering, Public University of Navarre, Campus Arrosadia s/n, 31006 Pamplona, Spain.


A study of different on-line adaptive classifiers, using various feature types is presented. Motor imagery brain computer interface (BCI) experiments were carried out with 18 naive able-bodied subjects. Experiments were done with three two-class, cue-based, electroencephalogram (EEG)-based systems. Two continuously adaptive classifiers were tested: adaptive quadratic and linear discriminant analysis. Three feature types were analyzed, adaptive autoregressive parameters, logarithmic band power estimates and the concatenation of both. Results show that all systems are stable and that the concatenation of features with continuously adaptive linear discriminant analysis classifier is the best choice of all. Also, a comparison of the latter with a discontinuously updated linear discriminant analysis, carried out in on-line experiments with six subjects, showed that on-line adaptation performed significantly better than a discontinuous update. Finally a static subject-specific baseline was also provided and used to compare performance measurements of both types of adaptation.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society
    Loading ...
    Support Center