Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 420

1.

The Glucoamylase Inhibitor Acarbose Has a Diet-Dependent and Reversible Effect on the Murine Gut Microbiome.

Baxter NT, Lesniak NA, Sinani H, Schloss PD, Koropatkin NM.

mSphere. 2019 Feb 6;4(1). pii: e00528-18. doi: 10.1128/mSphere.00528-18. Erratum in: mSphere. 2019 May 22;4(3):.

2.

Alpha-glucosidase inhibitors for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus.

Moelands SV, Lucassen PL, Akkermans RP, De Grauw WJ, Van de Laar FA.

Cochrane Database Syst Rev. 2018 Dec 28;12:CD005061. doi: 10.1002/14651858.CD005061.pub3.

PMID:
30592787
3.

Suppressive effect of ascophyllan HS on postprandial blood sugar level through the inhibition of α-glucosidase and stimulation of glucagon-like peptide-1 (GLP-1) secretion.

Okimura T, Jiang Z, Liang Y, Yamaguchi K, Oda T.

Int J Biol Macromol. 2019 Mar 15;125:453-458. doi: 10.1016/j.ijbiomac.2018.12.084. Epub 2018 Dec 8.

PMID:
30537502
4.

Metformin or Acarbose Treatment Significantly Reduced Albuminuria in Patients with Newly Diagnosed Type 2 Diabetes Mellitus and Low-Grade Albuminuria.

Pan Q, Xu Y, Yang N, Gao X, Liu J, Yang W, Wang G.

Med Sci Monit. 2018 Dec 10;24:8941-8949. doi: 10.12659/MSM.911979.

5.

Calorie Restriction Mimetics: Upstream-Type Compounds for Modulating Glucose Metabolism.

Shintani H, Shintani T, Ashida H, Sato M.

Nutrients. 2018 Nov 22;10(12). pii: E1821. doi: 10.3390/nu10121821. Review.

6.

Rational in silico design of novel α-glucosidase inhibitory peptides and in vitro evaluation of promising candidates.

Ibrahim MA, Bester MJ, Neitz AW, Gaspar ARM.

Biomed Pharmacother. 2018 Nov;107:234-242. doi: 10.1016/j.biopha.2018.07.163. Epub 2018 Aug 7.

PMID:
30096627
7.

Novel Potent Hypoglycemic Compounds from Euonymus laxiflorus Champ. and Their Effect on Reducing Plasma Glucose in an ICR Mouse Model.

Nguyen VB, Wang SL, Nguyen TH, Nguyen MT, Doan CT, Tran TN, Lin ZH, Nguyen QV, Kuo YH, Nguyen AD.

Molecules. 2018 Aug 2;23(8). pii: E1928. doi: 10.3390/molecules23081928.

8.

A New Benzophenone C-Glucoside and Other Constituents of Pseuduvaria fragrans and Their α-Glucosidase Inhibitory Activity.

Panidthananon W, Chaowasku T, Sritularak B, Likhitwitayawuid K.

Molecules. 2018 Jul 2;23(7). pii: E1600. doi: 10.3390/molecules23071600.

9.

Comparisons of Effects on Intestinal Short-Chain Fatty Acid Concentration after Exposure of Two Glycosidase Inhibitors in Mice.

Xu GD, Cai L, Ni YS, Tian SY, Lu YQ, Wang LN, Chen LL, Ma WY, Deng SP.

Biol Pharm Bull. 2018;41(7):1024-1033. doi: 10.1248/bpb.b17-00978.

10.

Saxagliptin Upregulates Nesfatin-1 Secretion and Ameliorates Insulin Resistance and Metabolic Profiles in Type 2 Diabetes Mellitus.

Chen K, Zhuo T, Wang J, Mei Q.

Metab Syndr Relat Disord. 2018 Sep;16(7):336-341. doi: 10.1089/met.2018.0010. Epub 2018 Jun 18.

PMID:
29912623
11.

New Insights into the Inhibition Mechanism of Betulinic Acid on α-Glucosidase.

Ding H, Wu X, Pan J, Hu X, Gong D, Zhang G.

J Agric Food Chem. 2018 Jul 11;66(27):7065-7075. doi: 10.1021/acs.jafc.8b02992. Epub 2018 Jun 26.

PMID:
29902001
12.

Baseline characteristics and temporal differences in Acarbose Cardiovascular Evaluation (ACE) trial participants.

Theodorakis MJ, Coleman RL, Feng H, Chan J, Chiasson JL, Ge J, Gerstein HC, Huo Y, Lang Z, McMurray JJ, Rydén L, Schröder S, Tendera M, Tuomilehto J, Yang W, Hu D, Pan C, Holman RR; ACE Study Group.

Am Heart J. 2018 May;199:170-175. doi: 10.1016/j.ahj.2017.09.001. Epub 2017 Sep 8. No abstract available.

PMID:
29754657
13.

Optimization of Extraction of Hypoglycemic Ingredients from Grape Seeds and Evaluation of α-Glucosidase and α-Amylase Inhibitory Effects In Vitro.

Kong F, Qin Y, Su Z, Ning Z, Yu S.

J Food Sci. 2018 May;83(5):1422-1429. doi: 10.1111/1750-3841.14150. Epub 2018 Apr 18.

PMID:
29668036
14.

Nonmicrobicidal Small Molecule Inhibition of Polysaccharide Metabolism in Human Gut Microbes: A Potential Therapeutic Avenue.

Santilli AD, Dawson EM, Whitehead KJ, Whitehead DC.

ACS Chem Biol. 2018 May 18;13(5):1165-1172. doi: 10.1021/acschembio.8b00309. Epub 2018 Apr 20.

PMID:
29660284
15.

Conversion of Curcumin into Heterocyclic Compounds as Potent Anti-diabetic and Anti-histamine Agents.

Nabil S, El-Rahman SNA, Al-Jameel SS, Elsharif AM.

Biol Pharm Bull. 2018 Jul 1;41(7):1071-1077. doi: 10.1248/bpb.b18-00170. Epub 2018 Apr 12.

16.

Multiplex Fluorescent, Activity-Based Protein Profiling Identifies Active α-Glycosidases and Other Hydrolases in Plants.

Husaini AM, Morimoto K, Chandrasekar B, Kelly S, Kaschani F, Palmero D, Jiang J, Kaiser M, Ahrazem O, Overkleeft HS, van der Hoorn RAL.

Plant Physiol. 2018 May;177(1):24-37. doi: 10.1104/pp.18.00250. Epub 2018 Mar 19.

17.

Anti-diabetic Phenolic Compounds of Black Carrot (Daucus carota Subspecies sativus var. atrorubens Alef.) Inhibit Enzymes of Glucose Metabolism: An in silico and in vitro Validation.

Karkute SG, Koley TK, Yengkhom BK, Tripathi A, Srivastava S, Maurya A, Singh B.

Med Chem. 2018;14(6):641-649. doi: 10.2174/1573406414666180301092819.

PMID:
29493459
18.

Moringa oleifera supplemented diet modulates nootropic-related biomolecules in the brain of STZ-induced diabetic rats treated with acarbose.

Oboh G, Oyeleye SI, Akintemi OA, Olasehinde TA.

Metab Brain Dis. 2018 Apr;33(2):457-466. doi: 10.1007/s11011-018-0198-2. Epub 2018 Feb 12.

PMID:
29435808
19.

Acarbose inhibits the proliferation and migration of vascular smooth muscle cells via targeting Ras signaling.

Yu MH, Lin MC, Huang CN, Chan KC, Wang CJ.

Vascul Pharmacol. 2018 Apr;103-105:8-15. doi: 10.1016/j.vph.2018.02.001. Epub 2018 Feb 9.

PMID:
29432898
20.

Morning glory resin glycosides as α-glucosidase inhibitors: In vitro and in silico analysis.

Rosas-Ramírez D, Escandón-Rivera S, Pereda-Miranda R.

Phytochemistry. 2018 Apr;148:39-47. doi: 10.1016/j.phytochem.2018.01.012. Epub 2018 Feb 6.

PMID:
29421509

Supplemental Content

Loading ...
Support Center