Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 329

1.
2.

Site-specific and random immobilization of thermolysin-like proteases reflected in the thermal inactivation kinetics.

Mansfeld J, Ulbrich-Hofmann R.

Biotechnol Appl Biochem. 2000 Dec;32 ( Pt 3):189-95.

PMID:
11115391
3.

Extreme stabilization of a thermolysin-like protease by an engineered disulfide bond.

Mansfeld J, Vriend G, Dijkstra BW, Veltman OR, Van den Burg B, Venema G, Ulbrich-Hofmann R, Eijsink VG.

J Biol Chem. 1997 Apr 25;272(17):11152-6.

4.

Thermostable variants constructed via the structure-guided consensus method also show increased stability in salts solutions and homogeneous aqueous-organic media.

Vazquez-Figueroa E, Yeh V, Broering JM, Chaparro-Riggers JF, Bommarius AS.

Protein Eng Des Sel. 2008 Nov;21(11):673-80. doi: 10.1093/protein/gzn048. Epub 2008 Sep 16.

PMID:
18799474
5.

An engineered disulfide bridge mimics the effect of calcium to protect neutral protease against local unfolding.

Dürrschmidt P, Mansfeld J, Ulbrich-Hofmann R.

FEBS J. 2005 Mar;272(6):1523-34.

6.

C-terminal truncations of a thermostable Bacillus stearothermophilus alpha-amylase.

Vihinen M, Peltonen T, Iitiä A, Suominen I, Mäntsälä P.

Protein Eng. 1994 Oct;7(10):1255-9.

PMID:
7855141
8.

Enhancement of the aspartame precursor synthetic activity of an organic solvent-stable protease.

Ogino H, Tsuchiyama S, Yasuda M, Doukyu N.

Protein Eng Des Sel. 2010 Mar;23(3):147-52. doi: 10.1093/protein/gzp086. Epub 2010 Jan 18.

PMID:
20083492
9.

Boilysin and thermolysin in dipeptide synthesis: a comparative study.

Kühn D, Dürrschmidt P, Mansfeld J, Ulbrich-Hofmann R.

Biotechnol Appl Biochem. 2002 Aug;36(Pt 1):71-6.

PMID:
12149125
10.

Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis.

Zhang ZG, Yi ZL, Pei XQ, Wu ZL.

Bioresour Technol. 2010 Dec;101(23):9272-8. doi: 10.1016/j.biortech.2010.07.060. Epub 2010 Jul 17.

PMID:
20691586
11.

General stability of thermophilic enzymes: studies on 6-phosphogluconate dehydrogenase from Bacillus stearothermophilus and yeast.

Veronese FM, Boccù E, Schiavon O, Grandi C, Fontana A.

J Appl Biochem. 1984 Feb-Apr;6(1-2):39-47.

PMID:
6386790
13.

The effect of engineering surface loops on the thermal stability of Bacillus subtilis neutral protease.

Hardy F, Vriend G, van der Vinne B, Frigerio F, Grandi G, Venema G, Eijsink VG.

Protein Eng. 1994 Mar;7(3):425-30.

PMID:
8177891
14.

Thermophilic proteins: stability and function in aqueous and organic solvents.

Cowan DA.

Comp Biochem Physiol A Physiol. 1997 Nov;118(3):429-38. Review.

PMID:
9406427
15.

Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236.

Jeong MY, Kim S, Yun CW, Choi YJ, Cho SG.

J Biotechnol. 2007 Jan 1;127(2):300-9. Epub 2006 Jul 16.

PMID:
16919348
16.

Alteration of specific activity and stability of thermostable neutral protease by site-directed mutagenesis.

Kubo M, Mitsuda Y, Takagi M, Imanaka T.

Appl Environ Microbiol. 1992 Nov;58(11):3779-83.

18.

Purification and characterization of a thermostable keratinolytic serine alkaline proteinase from Streptomyces sp. strain AB1 with high stability in organic solvents.

Jaouadi B, Abdelmalek B, Fodil D, Ferradji FZ, Rekik H, Zaraî N, Bejar S.

Bioresour Technol. 2010 Nov;101(21):8361-9. doi: 10.1016/j.biortech.2010.05.066. Epub 2010 Jun 17.

PMID:
20624606
19.

Isolation of a thermostable enzyme variant by cloning and selection in a thermophile.

Liao H, McKenzie T, Hageman R.

Proc Natl Acad Sci U S A. 1986 Feb;83(3):576-80.

20.

Site-directed mutagenesis of a thermostable alpha-amylase from Bacillus stearothermophilus: putative role of three conserved residues.

Vihinen M, Ollikka P, Niskanen J, Meyer P, Suominen I, Karp M, Holm L, Knowles J, Mäntsälä P.

J Biochem. 1990 Feb;107(2):267-72.

Supplemental Content

Support Center