Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 188

1.

Genetic Dissection of Resistance to the Three Fungal Plant Pathogens Blumeria graminis, Zymoseptoria tritici, and Pyrenophora tritici-repentis Using a Multiparental Winter Wheat Population.

Stadlmeier M, Jørgensen LN, Corsi B, Cockram J, Hartl L, Mohler V.

G3 (Bethesda). 2019 Mar 22. pii: g3.400068.2019. doi: 10.1534/g3.119.400068. [Epub ahead of print]

2.

Fungicides have complex effects on the wheat phyllosphere mycobiome.

Knorr K, Jørgensen LN, Nicolaisen M.

PLoS One. 2019 Mar 20;14(3):e0213176. doi: 10.1371/journal.pone.0213176. eCollection 2019.

3.

Broad-specificity GH131 β-glucanases are a hallmark of Fungi and Oomycetes that colonise plants.

Anasontzis GE, Lebrun MH, Haon M, Champion C, Kohler A, Lenfant N, Martin F, O'Connell RJ, Riley R, Grigoriev IV, Henrissat B, Berrin JG, Rosso MN.

Environ Microbiol. 2019 Mar 18. doi: 10.1111/1462-2920.14596. [Epub ahead of print]

PMID:
30887618
4.

Rapid loss of virulence during submergence of Z. tritici asexual spores.

Kay WT, Fones HN, Gurr SJ.

Fungal Genet Biol. 2019 Mar 12;128:14-19. doi: 10.1016/j.fgb.2019.03.004. [Epub ahead of print]

PMID:
30876892
5.

Spatiotemporal dynamics of fungicide resistance in the wheat pathogen Zymoseptoria tritici in France.

Garnault M, Duplaix C, Leroux P, Couleaud G, Carpentier F, David O, Walker AS.

Pest Manag Sci. 2019 Jan 24. doi: 10.1002/ps.5360. [Epub ahead of print]

PMID:
30680908
6.

Highly flexible infection programs in a specialized wheat pathogen.

Haueisen J, Möller M, Eschenbrenner CJ, Grandaubert J, Seybold H, Adamiak H, Stukenbrock EH.

Ecol Evol. 2018 Dec 26;9(1):275-294. doi: 10.1002/ece3.4724. eCollection 2019 Jan.

7.

Synthesis and biological activity of analogs of the antifungal antibiotic UK-2A. II. Impact of modifications to the macrocycle benzyl position.

Owen WJ, Meyer KG, Meyer ST, Li F, Slanec TJ, Wang NX, Yao C.

Pest Manag Sci. 2019 Jan 12. doi: 10.1002/ps.5329. [Epub ahead of print]

PMID:
30636031
8.

Meiotic drive of female-inherited supernumerary chromosomes in a pathogenic fungus.

Habig M, Kema GH, Holtgrewe Stukenbrock E.

Elife. 2018 Dec 13;7. pii: e40251. doi: 10.7554/eLife.40251.

9.

Rapid Parallel Evolution of Azole Fungicide Resistance in Australian Populations of the Wheat Pathogen Zymoseptoria tritici.

McDonald MC, Renkin M, Spackman M, Orchard B, Croll D, Solomon PS, Milgate A.

Appl Environ Microbiol. 2019 Feb 6;85(4). pii: e01908-18. doi: 10.1128/AEM.01908-18. Print 2019 Feb 15.

PMID:
30530713
10.

Development and Application of a New PCR Method for Detection of Blumeria graminis f. sp. tritici.

Kuzdraliński A, Szczerba H, Kot A, Ostrowska A, Nowak M, Muszyńska M.

J Mol Microbiol Biotechnol. 2018;28(3):137-146. doi: 10.1159/000494432. Epub 2018 Dec 6.

PMID:
30522117
11.

Metyltetraprole, a novel putative complex III inhibitor, targets known QoI-resistant strains of Zymoseptoria tritici and Pyrenophora teres.

Suemoto H, Matsuzaki Y, Iwahashi F.

Pest Manag Sci. 2019 Apr;75(4):1181-1189. doi: 10.1002/ps.5288. Epub 2019 Jan 17.

PMID:
30520257
12.

Phosphopantetheinyl transferase (Ppt)-mediated biosynthesis of lysine, but not siderophores or DHN melanin, is required for virulence of Zymoseptoria tritici on wheat.

Derbyshire MC, Gohari AM, Mehrabi R, Kilaru S, Steinberg G, Ali S, Bailey A, Hammond-Kosack K, Kema GHJ, Rudd JJ.

Sci Rep. 2018 Nov 20;8(1):17069. doi: 10.1038/s41598-018-35223-8.

13.

Features of interactions responsible for antifungal activity against resistant type cytochrome bc1: A data-driven analysis based on the binding free energy at the atomic level.

Arakawa A, Kasai Y, Yamazaki K, Iwahashi F.

PLoS One. 2018 Nov 19;13(11):e0207673. doi: 10.1371/journal.pone.0207673. eCollection 2018.

14.

A New Reference Genome Shows the One-Speed Genome Structure of the Barley Pathogen Ramularia collo-cygni.

Stam R, Münsterkötter M, Pophaly SD, Fokkens L, Sghyer H, Güldener U, Hückelhoven R, Hess M.

Genome Biol Evol. 2018 Dec 1;10(12):3243-3249. doi: 10.1093/gbe/evy240.

15.

Novel Combinations of Agents Targeting Translation That Synergistically Inhibit Fungal Pathogens.

Vallières C, Raulo R, Dickinson M, Avery SV.

Front Microbiol. 2018 Oct 4;9:2355. doi: 10.3389/fmicb.2018.02355. eCollection 2018.

16.
17.

Genetic mapping of Stb19, a new resistance gene to Zymoseptoria tritici in wheat.

Yang N, McDonald MC, Solomon PS, Milgate AW.

Theor Appl Genet. 2018 Dec;131(12):2765-2773. doi: 10.1007/s00122-018-3189-0. Epub 2018 Sep 20.

PMID:
30238255
18.

New salicylic acid and pyroglutamic acid conjugated derivatives confer protection to bread wheat against Zymoseptoria tritici.

Mejri S, Siah A, Abuhaie CM, Halama P, Magnin-Robert M, Randoux B, Reignault P, Rigo B, Ghinet A.

J Sci Food Agric. 2019 Mar 15;99(4):1780-1786. doi: 10.1002/jsfa.9370. Epub 2018 Oct 30.

PMID:
30226928
19.

Evaluation of λ-Carrageenan, CpG-ODN, Glycine Betaine, Spirulina platensis, and Ergosterol as Elicitors for Control of Zymoseptoria tritici in Wheat.

Le Mire G, Siah A, Marolleau B, Gaucher M, Maumené C, Brostaux Y, Massart S, Brisset MN, Jijakli MH.

Phytopathology. 2019 Mar;109(3):409-417. doi: 10.1094/PHYTO-11-17-0367-R. Epub 2019 Jan 8.

PMID:
30161014
20.

Exploring the Genetic Regulation of Asexual Sporulation in Zymoseptoria tritici.

Tiley AMM, Foster GD, Bailey AM.

Front Microbiol. 2018 Aug 14;9:1859. doi: 10.3389/fmicb.2018.01859. eCollection 2018.

Supplemental Content

Loading ...
Support Center