Format
Sort by
Items per page

Send to

Choose Destination

Best matches for zhavoronkov+a:

Applications of Deep Learning in Biomedicine. Mamoshina P et al. Mol Pharm. (2016)

Towards natural mimetics of metformin and rapamycin. Aliper A et al. Aging (Albany NY). (2017)

A comparative review of computational methods for pathway perturbation analysis: dynamical and topological perspectives. Vanhaelen Q et al. Mol Biosyst. (2017)

Search results

Items: 1 to 20 of 169

1.

Artificial intelligence for aging and longevity research: Recent advances and perspectives.

Zhavoronkov A, Mamoshina P, Vanhaelen Q, Scheibye-Knudsen M, Moskalev A, Aliper A.

Ageing Res Rev. 2018 Nov 22;49:49-66. doi: 10.1016/j.arr.2018.11.003. [Epub ahead of print] Review.

2.

Aging and drug discovery.

Bakula D, Aliper AM, Mamoshina P, Petr MA, Teklu A, Baur JA, Campisi J, Ewald CY, Georgievskaya A, Gladyshev VN, Kovalchuk O, Lamming DW, Luijsterburg MS, Martín-Montalvo A, Maudsley S, Mkrtchyan GV, Moskalev A, Olshansky SJ, Ozerov IV, Pickett A, Ristow M, Zhavoronkov A, Scheibye-Knudsen M.

Aging (Albany NY). 2018 Nov 13;10(11):3079-3088. doi: 10.18632/aging.101646.

3.

PhotoAgeClock: deep learning algorithms for development of non-invasive visual biomarkers of aging.

Bobrov E, Georgievskaya A, Kiselev K, Sevastopolsky A, Zhavoronkov A, Gurov S, Rudakov K, Del Pilar Bonilla Tobar M, Jaspers S, Clemann S.

Aging (Albany NY). 2018 Nov 9;10(11):3249-3259. doi: 10.18632/aging.101629.

4.

Overexpression of CBS and CSE genes affects lifespan, stress resistance and locomotor activity in Drosophila melanogaster.

Shaposhnikov M, Proshkina E, Koval L, Zemskaya N, Zhavoronkov A, Moskalev A.

Aging (Albany NY). 2018 Nov 8;10(11):3260-3272. doi: 10.18632/aging.101630.

5.

Artificial Intelligence for Drug Discovery, Biomarker Development, and Generation of Novel Chemistry.

Zhavoronkov A.

Mol Pharm. 2018 Oct 1;15(10):4311-4313. doi: 10.1021/acs.molpharmaceut.8b00930. No abstract available.

PMID:
30269508
6.

Effects of N-acetyl-L-cysteine on lifespan, locomotor activity and stress-resistance of 3 Drosophila species with different lifespans.

Shaposhnikov MV, Zemskaya NV, Koval LA, Schegoleva EV, Zhavoronkov A, Moskalev AA.

Aging (Albany NY). 2018 Sep 20;10(9):2428-2458. doi: 10.18632/aging.101561.

7.

Entangled Conditional Adversarial Autoencoder for de Novo Drug Discovery.

Polykovskiy D, Zhebrak A, Vetrov D, Ivanenkov Y, Aladinskiy V, Mamoshina P, Bozdaganyan M, Aliper A, Zhavoronkov A, Kadurin A.

Mol Pharm. 2018 Oct 1;15(10):4398-4405. doi: 10.1021/acs.molpharmaceut.8b00839. Epub 2018 Sep 19.

8.

Machine Learning on Human Muscle Transcriptomic Data for Biomarker Discovery and Tissue-Specific Drug Target Identification.

Mamoshina P, Volosnikova M, Ozerov IV, Putin E, Skibina E, Cortese F, Zhavoronkov A.

Front Genet. 2018 Jul 12;9:242. doi: 10.3389/fgene.2018.00242. eCollection 2018.

9.

Integrated transcriptomic and epigenomic analysis of ovarian cancer reveals epigenetically silenced GULP1.

Maldonado L, Brait M, Izumchenko E, Begum S, Chatterjee A, Sen T, Loyo M, Barbosa A, Poeta ML, Makarev E, Zhavoronkov A, Fazio VM, Angioli R, Rabitti C, Ongenaert M, Van Criekinge W, Noordhuis MG, de Graeff P, Wisman GBA, van der Zee AGJ, Hoque MO.

Cancer Lett. 2018 Oct 1;433:242-251. doi: 10.1016/j.canlet.2018.06.030. Epub 2018 Jun 28.

PMID:
29964205
10.

Reinforced Adversarial Neural Computer for de Novo Molecular Design.

Putin E, Asadulaev A, Ivanenkov Y, Aladinskiy V, Sanchez-Lengeling B, Aspuru-Guzik A, Zhavoronkov A.

J Chem Inf Model. 2018 Jun 25;58(6):1194-1204. doi: 10.1021/acs.jcim.7b00690. Epub 2018 Jun 12.

11.

Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization.

Cortese F, Klokov D, Osipov A, Stefaniak J, Moskalev A, Schastnaya J, Cantor C, Aliper A, Mamoshina P, Ushakov I, Sapetsky A, Vanhaelen Q, Alchinova I, Karganov M, Kovalchuk O, Wilkins R, Shtemberg A, Moreels M, Baatout S, Izumchenko E, de Magalhães JP, Artemov AV, Costes SV, Beheshti A, Mao XW, Pecaut MJ, Kaminskiy D, Ozerov IV, Scheibye-Knudsen M, Zhavoronkov A.

Oncotarget. 2018 Feb 12;9(18):14692-14722. doi: 10.18632/oncotarget.24461. eCollection 2018 Mar 6. Review.

12.

Adversarial Threshold Neural Computer for Molecular de Novo Design.

Putin E, Asadulaev A, Vanhaelen Q, Ivanenkov Y, Aladinskaya AV, Aliper A, Zhavoronkov A.

Mol Pharm. 2018 Oct 1;15(10):4386-4397. doi: 10.1021/acs.molpharmaceut.7b01137. Epub 2018 Mar 30.

13.

Targeting focal adhesion kinase overcomes erlotinib resistance in smoke induced lung cancer by altering phosphorylation of epidermal growth factor receptor.

Solanki HS, Raja R, Zhavoronkov A, Ozerov IV, Artemov AV, Advani J, Radhakrishnan A, Babu N, Puttamallesh VN, Syed N, Nanjappa V, Subbannayya T, Sahasrabuddhe NA, Patil AH, Prasad TSK, Gaykalova D, Chang X, Sathyendran R, Mathur PP, Rangarajan A, Sidransky D, Pandey A, Izumchenko E, Gowda H, Chatterjee A.

Oncoscience. 2018 Feb 23;5(1-2):21-38. doi: 10.18632/oncoscience.395. eCollection 2018 Jan.

14.

Use of deep neural network ensembles to identify embryonic-fetal transition markers: repression of COX7A1 in embryonic and cancer cells.

West MD, Labat I, Sternberg H, Larocca D, Nasonkin I, Chapman KB, Singh R, Makarev E, Aliper A, Kazennov A, Alekseenko A, Shuvalov N, Cheskidova E, Alekseev A, Artemov A, Putin E, Mamoshina P, Pryanichnikov N, Larocca J, Copeland K, Izumchenko E, Korzinkin M, Zhavoronkov A.

Oncotarget. 2017 Dec 28;9(8):7796-7811. doi: 10.18632/oncotarget.23748. eCollection 2018 Jan 30.

15.

3D Molecular Representations Based on the Wave Transform for Convolutional Neural Networks.

Kuzminykh D, Polykovskiy D, Kadurin A, Zhebrak A, Baskov I, Nikolenko S, Shayakhmetov R, Zhavoronkov A.

Mol Pharm. 2018 Oct 1;15(10):4378-4385. doi: 10.1021/acs.molpharmaceut.7b01134. Epub 2018 Mar 5.

16.

Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy.

Ravi R, Noonan KA, Pham V, Bedi R, Zhavoronkov A, Ozerov IV, Makarev E, V Artemov A, Wysocki PT, Mehra R, Nimmagadda S, Marchionni L, Sidransky D, Borrello IM, Izumchenko E, Bedi A.

Nat Commun. 2018 Feb 21;9(1):741. doi: 10.1038/s41467-017-02696-6.

17.

Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare.

Mamoshina P, Ojomoko L, Yanovich Y, Ostrovski A, Botezatu A, Prikhodko P, Izumchenko E, Aliper A, Romantsov K, Zhebrak A, Ogu IO, Zhavoronkov A.

Oncotarget. 2017 Nov 9;9(5):5665-5690. doi: 10.18632/oncotarget.22345. eCollection 2018 Jan 19.

18.

The Evaluation of Geroprotective Effects of Selected Flavonoids in Drosophila melanogaster and Caenorhabditis elegans.

Lashmanova E, Zemskaya N, Proshkina E, Kudryavtseva A, Volosnikova M, Marusich E, Leonov S, Zhavoronkov A, Moskalev A.

Front Pharmacol. 2017 Dec 7;8:884. doi: 10.3389/fphar.2017.00884. eCollection 2017.

19.

Population Specific Biomarkers of Human Aging: A Big Data Study Using South Korean, Canadian, and Eastern European Patient Populations.

Mamoshina P, Kochetov K, Putin E, Cortese F, Aliper A, Lee WS, Ahn SM, Uhn L, Skjodt N, Kovalchuk O, Scheibye-Knudsen M, Zhavoronkov A.

J Gerontol A Biol Sci Med Sci. 2018 Oct 8;73(11):1482-1490. doi: 10.1093/gerona/gly005.

20.

A method of gene expression data transfer from cell lines to cancer patients for machine-learning prediction of drug efficiency.

Borisov N, Tkachev V, Suntsova M, Kovalchuk O, Zhavoronkov A, Muchnik I, Buzdin A.

Cell Cycle. 2018;17(4):486-491. doi: 10.1080/15384101.2017.1417706. Epub 2018 Jan 17.

PMID:
29251172

Supplemental Content

Loading ...
Support Center