Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 21

1.

Dual MAPK Inhibition Is an Effective Therapeutic Strategy for a Subset of Class II BRAF Mutant Melanomas.

Dankner M, Lajoie M, Moldoveanu D, Nguyen TT, Savage P, Rajkumar S, Huang X, Lvova M, Protopopov A, Vuzman D, Hogg D, Park M, Guiot MC, Petrecca K, Mihalcioiu C, Watson IR, Siegel PM, Rose AAN.

Clin Cancer Res. 2018 Dec 15;24(24):6483-6494. doi: 10.1158/1078-0432.CCR-17-3384. Epub 2018 Jun 14.

PMID:
29903896
2.

Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations.

Dankner M, Rose AAN, Rajkumar S, Siegel PM, Watson IR.

Oncogene. 2018 Jun;37(24):3183-3199. doi: 10.1038/s41388-018-0171-x. Epub 2018 Mar 15. Review.

PMID:
29540830
3.

MAPK Pathway Inhibitors Sensitize BRAF-Mutant Melanoma to an Antibody-Drug Conjugate Targeting GPNMB.

Rose AA, Annis MG, Frederick DT, Biondini M, Dong Z, Kwong L, Chin L, Keler T, Hawthorne T, Watson IR, Flaherty KT, Siegel PM.

Clin Cancer Res. 2016 Dec 15;22(24):6088-6098. Epub 2016 Aug 11.

4.

Molecular characterisation of cutaneous melanoma: creating a framework for targeted and immune therapies.

Rajkumar S, Watson IR.

Br J Cancer. 2016 Jul 12;115(2):145-55. doi: 10.1038/bjc.2016.195. Epub 2016 Jun 23. Review.

5.

Genomic Classification of Cutaneous Melanoma.

Cancer Genome Atlas Network.

Cell. 2015 Jun 18;161(7):1681-96. doi: 10.1016/j.cell.2015.05.044.

6.

Use of clinical next-generation sequencing to identify melanomas harboring SMARCB1 mutations.

Stockman DL, Curry JL, Torres-Cabala CA, Watson IR, Siroy AE, Bassett RL, Zou L, Patel KP, Luthra R, Davies MA, Wargo JA, Routbort MA, Broaddus RR, Prieto VG, Lazar AJ, Tetzlaff MT.

J Cutan Pathol. 2015 May;42(5):308-17. doi: 10.1111/cup.12481. Epub 2015 Mar 24.

PMID:
25754356
7.

The RAC1 P29S hotspot mutation in melanoma confers resistance to pharmacological inhibition of RAF.

Watson IR, Li L, Cabeceiras PK, Mahdavi M, Gutschner T, Genovese G, Wang G, Fang Z, Tepper JM, Stemke-Hale K, Tsai KY, Davies MA, Mills GB, Chin L.

Cancer Res. 2014 Sep 1;74(17):4845-4852. doi: 10.1158/0008-5472.CAN-14-1232-T. Epub 2014 Jul 23.

8.

The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models.

Yen J, White RM, Wedge DC, Van Loo P, de Ridder J, Capper A, Richardson J, Jones D, Raine K, Watson IR, Wu CJ, Cheng J, Martincorena I, Nik-Zainal S, Mudie L, Moreau Y, Marshall J, Ramakrishna M, Tarpey P, Shlien A, Whitmore I, Gamble S, Latimer C, Langdon E, Kaufman C, Dovey M, Taylor A, Menzies A, McLaren S, O'Meara S, Butler A, Teague J, Lister J, Chin L, Campbell P, Adams DJ, Zon LI, Patton EE, Stemple DL, Futreal PA.

Genome Biol. 2013;14(10):R113.

9.

Why is melanoma so metastatic?

Braeuer RR, Watson IR, Wu CJ, Mobley AK, Kamiya T, Shoshan E, Bar-Eli M.

Pigment Cell Melanoma Res. 2014 Jan;27(1):19-36. doi: 10.1111/pcmr.12172. Epub 2013 Oct 17. Review.

PMID:
24106873
10.

Emerging patterns of somatic mutations in cancer.

Watson IR, Takahashi K, Futreal PA, Chin L.

Nat Rev Genet. 2013 Oct;14(10):703-18. doi: 10.1038/nrg3539. Epub 2013 Sep 11. Review.

11.

Eukaryotic translation elongation factor 1-alpha 1 inhibits p53 and p73 dependent apoptosis and chemotherapy sensitivity.

Blanch A, Robinson F, Watson IR, Cheng LS, Irwin MS.

PLoS One. 2013 Jun 14;8(6):e66436. doi: 10.1371/journal.pone.0066436. Print 2013.

12.

A landscape of driver mutations in melanoma.

Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, Dicara D, Ramos AH, Lawrence MS, Cibulskis K, Sivachenko A, Voet D, Saksena G, Stransky N, Onofrio RC, Winckler W, Ardlie K, Wagle N, Wargo J, Chong K, Morton DL, Stemke-Hale K, Chen G, Noble M, Meyerson M, Ladbury JE, Davies MA, Gershenwald JE, Wagner SN, Hoon DS, Schadendorf D, Lander ES, Gabriel SB, Getz G, Garraway LA, Chin L.

Cell. 2012 Jul 20;150(2):251-63. doi: 10.1016/j.cell.2012.06.024.

13.

Melanoma genome sequencing reveals frequent PREX2 mutations.

Berger MF, Hodis E, Heffernan TP, Deribe YL, Lawrence MS, Protopopov A, Ivanova E, Watson IR, Nickerson E, Ghosh P, Zhang H, Zeid R, Ren X, Cibulskis K, Sivachenko AY, Wagle N, Sucker A, Sougnez C, Onofrio R, Ambrogio L, Auclair D, Fennell T, Carter SL, Drier Y, Stojanov P, Singer MA, Voet D, Jing R, Saksena G, Barretina J, Ramos AH, Pugh TJ, Stransky N, Parkin M, Winckler W, Mahan S, Ardlie K, Baldwin J, Wargo J, Schadendorf D, Meyerson M, Gabriel SB, Golub TR, Wagner SN, Lander ES, Getz G, Chin L, Garraway LA.

Nature. 2012 May 9;485(7399):502-6. doi: 10.1038/nature11071.

14.

NEDD8 pathways in cancer, Sine Quibus Non.

Watson IR, Irwin MS, Ohh M.

Cancer Cell. 2011 Feb 15;19(2):168-76. doi: 10.1016/j.ccr.2011.01.002. Review.

15.

Oncolytic targeting of renal cell carcinoma via encephalomyocarditis virus.

Roos FC, Roberts AM, Hwang II, Moriyama EH, Evans AJ, Sybingco S, Watson IR, Carneiro LA, Gedye C, Girardin SE, Ailles LE, Jewett MA, Milosevic M, Wilson BC, Bell JC, Der SD, Ohh M.

EMBO Mol Med. 2010 Jul;2(7):275-88. doi: 10.1002/emmm.201000081.

16.

Suppression of hypoxia-inducible factor 2alpha restores p53 activity via Hdm2 and reverses chemoresistance of renal carcinoma cells.

Roberts AM, Watson IR, Evans AJ, Foster DA, Irwin MS, Ohh M.

Cancer Res. 2009 Dec 1;69(23):9056-64. doi: 10.1158/0008-5472.CAN-09-1770. Epub 2009 Nov 17.

17.

Chemotherapy induces NEDP1-mediated destabilization of MDM2.

Watson IR, Li BK, Roche O, Blanch A, Ohh M, Irwin MS.

Oncogene. 2010 Jan 14;29(2):297-304. doi: 10.1038/onc.2009.314. Epub 2009 Sep 28.

PMID:
19784069
18.

Mdm2-mediated NEDD8 modification of TAp73 regulates its transactivation function.

Watson IR, Blanch A, Lin DC, Ohh M, Irwin MS.

J Biol Chem. 2006 Nov 10;281(45):34096-103. Epub 2006 Sep 14.

19.
20.

Ubiquitin and ubiquitin-like modifications of the p53 family.

Watson IR, Irwin MS.

Neoplasia. 2006 Aug;8(8):655-66. Review.

Supplemental Content

Loading ...
Support Center