Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 232

1.

Structural and Mechanistic Insights into Caffeine Degradation by the Bacterial N-Demethylase Complex.

Kim JH, Kim BH, Brooks S, Kang SY, Summers RM, Song HK.

J Mol Biol. 2019 Sep 6;431(19):3647-3661. doi: 10.1016/j.jmb.2019.08.004. Epub 2019 Aug 11.

PMID:
31412262
2.

Artificial Intelligence in Musculoskeletal Imaging: A Paradigm Shift.

Burns JE, Yao J, Summers RM.

J Bone Miner Res. 2019 Aug 9. doi: 10.1002/jbmr.3849. [Epub ahead of print] Review.

PMID:
31398274
3.

Fully automated prostate whole gland and central gland segmentation on MRI using holistically nested networks with short connections.

Cheng R, Lay N, Roth HR, Turkbey B, Jin D, Gandler W, McCreedy ES, Pohida T, Pinto P, Choyke P, McAuliffe MJ, Summers RM.

J Med Imaging (Bellingham). 2019 Apr;6(2):024007. doi: 10.1117/1.JMI.6.2.024007. Epub 2019 Jun 5.

PMID:
31205977
4.

Deep learning-based muscle segmentation and quantification at abdominal CT: application to a longitudinal adult screening cohort for sarcopenia assessment.

Graffy PM, Liu J, Pickhardt PJ, Burns JE, Yao J, Summers RM.

Br J Radiol. 2019 Aug;92(1100):20190327. doi: 10.1259/bjr.20190327. Epub 2019 Jun 24.

PMID:
31199670
5.

A Road Map for Translational Research on Artificial Intelligence in Medical Imaging: From the 2018 National Institutes of Health/RSNA/ACR/The Academy Workshop.

Allen B Jr, Seltzer SE, Langlotz CP, Dreyer KP, Summers RM, Petrick N, Marinac-Dabic D, Cruz M, Alkasab TK, Hanisch RJ, Nilsen WJ, Burleson J, Lyman K, Kandarpa K.

J Am Coll Radiol. 2019 Sep;16(9 Pt A):1179-1189. doi: 10.1016/j.jacr.2019.04.014. Epub 2019 May 28.

PMID:
31151893
6.

A Machine Learning Algorithm to Estimate Sarcopenia on Abdominal CT.

Burns JE, Yao J, Chalhoub D, Chen JJ, Summers RM.

Acad Radiol. 2019 May 21. pii: S1076-6332(19)30165-5. doi: 10.1016/j.acra.2019.03.011. [Epub ahead of print]

PMID:
31126808
7.

Automated segmentation and quantification of aortic calcification at abdominal CT: application of a deep learning-based algorithm to a longitudinal screening cohort.

Graffy PM, Liu J, O'Connor S, Summers RM, Pickhardt PJ.

Abdom Radiol (NY). 2019 Aug;44(8):2921-2928. doi: 10.1007/s00261-019-02014-2.

PMID:
30976827
8.

Interreader Variability of Prostate Imaging Reporting and Data System Version 2 in Detecting and Assessing Prostate Cancer Lesions at Prostate MRI.

Greer MD, Shih JH, Lay N, Barrett T, Bittencourt L, Borofsky S, Kabakus I, Law YM, Marko J, Shebel H, Merino MJ, Wood BJ, Pinto PA, Summers RM, Choyke PL, Turkbey B.

AJR Am J Roentgenol. 2019 Mar 27:1-8. doi: 10.2214/AJR.18.20536. [Epub ahead of print]

PMID:
30917023
9.

Opportunistic Osteoporosis Screening at Routine Abdominal and Thoracic CT: Normative L1 Trabecular Attenuation Values in More than 20 000 Adults.

Jang S, Graffy PM, Ziemlewicz TJ, Lee SJ, Summers RM, Pickhardt PJ.

Radiology. 2019 May;291(2):360-367. doi: 10.1148/radiol.2019181648. Epub 2019 Mar 26.

PMID:
30912719
10.

Prostate cancer detection from multi-institution multiparametric MRIs using deep convolutional neural networks.

Sumathipala Y, Lay N, Turkbey B, Smith C, Choyke PL, Summers RM.

J Med Imaging (Bellingham). 2018 Oct;5(4):044507. doi: 10.1117/1.JMI.5.4.044507. Epub 2018 Dec 15.

PMID:
30840728
11.

BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions.

Huang M, Liu X, Zhou Y, Summers RM, Zhang Z.

Gigascience. 2019 Feb 1;8(2). doi: 10.1093/gigascience/giy154.

12.

Population-based opportunistic osteoporosis screening: Validation of a fully automated CT tool for assessing longitudinal BMD changes.

Pickhardt PJ, Lee SJ, Liu J, Yao J, Lay N, Graffy PM, Summers RM.

Br J Radiol. 2019 Feb;92(1094):20180726. doi: 10.1259/bjr.20180726. Epub 2018 Nov 28.

PMID:
30433815
13.

Deep learning in medical imaging and radiation therapy.

Sahiner B, Pezeshk A, Hadjiiski LM, Wang X, Drukker K, Cha KH, Summers RM, Giger ML.

Med Phys. 2019 Jan;46(1):e1-e36. doi: 10.1002/mp.13264. Epub 2018 Nov 20. Review.

PMID:
30367497
14.

Can computer-aided diagnosis assist in the identification of prostate cancer on prostate MRI? a multi-center, multi-reader investigation.

Gaur S, Lay N, Harmon SA, Doddakashi S, Mehralivand S, Argun B, Barrett T, Bednarova S, Girometti R, Karaarslan E, Kural AR, Oto A, Purysko AS, Antic T, Magi-Galluzzi C, Saglican Y, Sioletic S, Warren AY, Bittencourt L, F├╝tterer JJ, Gupta RT, Kabakus I, Law YM, Margolis DJ, Shebel H, Westphalen AC, Wood BJ, Pinto PA, Shih JH, Choyke PL, Summers RM, Turkbey B.

Oncotarget. 2018 Sep 18;9(73):33804-33817. doi: 10.18632/oncotarget.26100. eCollection 2018 Sep 18.

15.

DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning.

Yan K, Wang X, Lu L, Summers RM.

J Med Imaging (Bellingham). 2018 Jul;5(3):036501. doi: 10.1117/1.JMI.5.3.036501. Epub 2018 Jul 20.

16.

Are we at a crossroads or a plateau? Radiomics and machine learning in abdominal oncology imaging.

Summers RM.

Abdom Radiol (NY). 2019 Jun;44(6):1985-1989. doi: 10.1007/s00261-018-1613-1.

PMID:
29730736
17.

Computer-aided diagnosis prior to conventional interpretation of prostate mpMRI: an international multi-reader study.

Greer MD, Lay N, Shih JH, Barrett T, Bittencourt LK, Borofsky S, Kabakus I, Law YM, Marko J, Shebel H, Mertan FV, Merino MJ, Wood BJ, Pinto PA, Summers RM, Choyke PL, Turkbey B.

Eur Radiol. 2018 Oct;28(10):4407-4417. doi: 10.1007/s00330-018-5374-6. Epub 2018 Apr 12.

PMID:
29651763
18.

Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks.

Gao M, Bagci U, Lu L, Wu A, Buty M, Shin HC, Roth H, Papadakis GZ, Depeursinge A, Summers RM, Xu Z, Mollura DJ.

Comput Methods Biomech Biomed Eng Imaging Vis. 2018;6(1):1-6. doi: 10.1080/21681163.2015.1124249. Epub 2016 Jun 6.

19.

Deep Learning Lends a Hand to Pediatric Radiology.

Summers RM.

Radiology. 2018 Apr;287(1):323-325. doi: 10.1148/radiol.2018172898. No abstract available.

20.

Fully automated segmentation and quantification of visceral and subcutaneous fat at abdominal CT: application to a longitudinal adult screening cohort.

Lee SJ, Liu J, Yao J, Kanarek A, Summers RM, Pickhardt PJ.

Br J Radiol. 2018 Sep;91(1089):20170968. doi: 10.1259/bjr.20170968. Epub 2018 Mar 28.

Supplemental Content

Loading ...
Support Center